级数Σa^n (1 a^n)的敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:13:26
n≥1.当01,u=1/a^(lnn)=1/[e^(lnn)]^p=1/n^p,则级数收敛.
楼主的做法是:1/n(n+1)=1/n-1/(n+1)
因为a(n)单调有界、正,a(n)->a>=0.1、如果a=0,结果不一定正确.例如a(n)=1/n,级数的通项=n/(n+1)-(n+1)/n=-(2n+1)/(n(n+1)),这个不收敛.2、如果
俺来回答一下,马上拍照再答:
An=(2n)!/a^(n!)A1=2/a易知An>0又A(n+1)/An=(2n+2)(2n+1)/a^(n+1)存在N使得当n>N(足够大时)A(n+1)/An=(2n+2)(2n+1)/a^(n
(2^n)(a^n)=(2a)^n要使级数收敛,2a
这个是收敛的,1/n^+a^<1/n²<1/n(n-1)=1/(n-1)-1/n,n≥2,所以0<∑1/n^+a^<1/(1+a^)+1-1/n,当n趋于无穷,有0<∑1/n^+a^<1/(
1.a1,1/(1+a^n)
这道题不用分类讨论,无论a取何值都是收敛的,因为这个表达式只是数列通项,不是部分和数列的表达式,楼主可能这里犯错了.
a^n/(1+a^2n)=1/[(1/a^n)+a^n]当a=1时,通项极限=1/2所以发散当a>1时,a^n/(1+a^2n)=1/[(1/a^n)+a^n]
1.limn^(a+1)/(n^a(2n-1))=1/2因为:级数1/n^(a+1)收敛,原级数收敛2.1/(an+b)>1/(an)原级数发散再问:b>0,1/(an+b)<1/(an)吧,大的级数
设f(x)=1/|a|^√x,求下限1,上限+∝的反常积分,分成|a|1讨论下,|a|1时利用洛必达法则,能够得到反常积分收敛,而√n全包含于√x,所以原级数在|a|>1时收敛,|a|≤1时发散,过程
a^n/(1+a^n)=1/(1+(1/a)^n)所以当|a|
用反证法证明假设∑[a(n)+b(n)]收敛lim∑b(n)=lim(∑a(n)+∑b(n))-lim(∑a(n))显然lim∑b(n)存在,这样就得到矛盾.
http://www.math.org.cn/forum.php?mod=viewthread&tid=28241&extra=
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
分情况一,正项级数则收敛,简单证明下设∑An=k则an必然有界an中m项和为∑bm