级数(n 1)! n的n 1次方收敛性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:24:43
(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2
两组物品,一组n1个,一组n2个,从两组中一共取出n个方法1:C(n1+n2,n)方法2:第一组取0个,第二组取n个;第一组取1个,第二组取n-1个----------第一组取k个,第二组取n-k个-
@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2
n3到n1难度依次增加可以度娘到各种备考资料不过我最爱沪江内容很广
对(n+1)!用斯特林公式,得到级数绝对收敛
n1=5;a1=26.n2=8;a2=65n3=11;a3=122;n4=5;a4=26所以n(3k+1)=5,n(3k+2)=8.n(3k)=11n2008=n(3*669+1)=5,a2008=2
∵f(1)=3,对于任意的n1,n2∈N*,f(n1+n2)=f(n1)f(n2).∴f(2)=f(1+1)=f(1)f(1)=3^2=9,f(3)=f(2+1)=f(2)f(1)=3^2×3=3^3
只需要求后一项与前一项的比值:为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=(n+1)^(n-1)/n^n=【(n+1)/n】^n*【1/(n+1)】lim【(n+1)/n】^
先判断是否绝对收敛,如下:
n2=++n1先作n1=++n1,此时n1=n1+1=2+1=3,再作n2=n1=3n1=n2++先作n1=n2=3,再作n2=n2++=n2+1=3+1=4执行后n1=3,n2=4
∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能
提示哪里就是哪里出错了你调用函数fft1没有往里面传递m但是你函数里面用到m了m没定义再问:那怎么加到里面啊???再答:这函数你写的我怎么知道怎么加到里面如果不是你写的看是不是抄错了,或者把m换成n试
R=a(n-1)/an=n/(n-1)=1;当x=-1时,是交错级数,极限->0x=1是时,是调和级数,不收敛所以[-1,1)是收敛域
解∵f(n1+n2)=f(n1)f(n2)∴f(n)=a^x有∵,f(2)=4∴a=2∴f(n)=2^x
条件收敛收敛K>1发散再问:亲,你确定不?
a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)
不要怕,按题目要求,写出N和A的数列的前几项如下:项:1、2、3、4、5、……N:5、8、11、5、8、……A:26、65、122、26、65、……可见N是5、8、11三个数一循环;A是26、65、1
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/
由1式:N=N1(1+u/v),即u/v=N/N1-1由2式:N=N2(1-u/v),即u/v=1-N/N2两式相减,消去u/v:N/N1-1-1+N/N2=0N(1/N1+1/N2)=2N=2N1N