系数行列式不等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:33:24
系数行列式不等于0
如果矩阵A的行列式乘以矩阵B的行列式不等于0,能不能说明A和B的行列式都不等于零?

|A|,|B|是两个数,两个数的积不为0,这两个数当然都不为0所以|A|,|B|都不为0

n阶矩阵A行列式为0,存在一个代数余子式子不等于0

行列式为0故r(A)一个代数余子式非0,故所在的n-1行线性无关,r(A)≥n-1.即有r(A)=n-1.再问:不是这样,我刚才知道,是利用k阶子式的知识再答:你是说下面这个结论?方阵A的秩=最大的k

逆矩阵的行列式等不等于行列式的倒数?为什么?

等于.因为AB=BA=E(单位阵),B是A的逆矩阵.所以|AB|=|BA|=1.当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,有|B|=1/|A|.

怎么证明一个矩阵可逆的充要条件是其行列式不等于0

因为|AB|=|A||B|啊,书上的性质,同济五版第四十页.

齐次线性方程组只有零解,能说明该系数行列式D不等于0吗?

可以的只要系数组成的矩阵是一个方阵,那么系数行列式的值不为0

克拉默法则说:"若线性方程组的系数行列式不等于零,那么方程组有唯一解."还有一个定理说:"如果齐次线性方程组的系数行列式

这两种说法并不矛盾.“如果齐次线性方程组的系数行列式不等于零,则它没有非零解”,就是说,它的解也是唯一的,这个“唯一的解”是零解.比如Ax=b,若b≠0,则为“非齐次线性方程组”,当│A│≠0时,有唯

线性方程组的系数的行列式为0,为什么就有非零解额?

系数矩阵行列式为零,那么秩就小于阶数那么行就线性相关因此存在c1,c2,...,cN,不全为零,使得c1p1+c2p2+...+cNpN=0,其中pi是矩阵行向量即Ax=0x=(c1,c2,...,c

如果线性方程组的系数行列式不等于零,则这个线性方程组一定有解,且解唯一.

如果一个线性方程组无解或者存在不唯一的解,则这个线性方程组的线性行列式等于零._____A∩B=A∪B既后一个的否命题原型.

设方程组的系数矩阵为A=[aij]n*n,且行列式|A|=0,而|A|中某一元素aij的代数余子式Aij不等于0,证明,

因为‍‍Aij不等于0,所以r(A)=n-1,AX=0的解的线性无关的个数为n-r(A)=1又因为AA*=|A|E=0,所以A*的列向量都是AX=0的解,所以方程组的通解可表示

线性方程组的通解 齐次线性方程组的系数矩阵A(n阶方阵)的行列式值为0,Aij不等于零,证明:

证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解

克莱姆法则/克拉默法则是充要的吗?即由n*n线性方程组有唯一解是否可以推出系数行列式不等于0?如何证明?

这个问题要换个思路记A=(a1,a2,...,an)则Ax=b有唯一解b可由a1,a2,...,an唯一线性表示由此可得a1,a2,...,an线性无关进而行列式|a1,a2,...,an|=|A|≠

老师 矩阵的行列式等于和不等于0能代表什么?

这个成立是充要条件|A|=0的充分必要条件A不可逆(又称奇异)A的列(行)向量组线性相关R(A)

设n个方程n个未知量的齐次线性方程组AX=O的系数行列式lAl=0,而a11的代数余子式A11不等于0,求方程组通解

lAl=0,a11的代数余子式A11不等于0,所以r(A)=n-1,AA*=|A|E=0这说明A*的列向量都是AX=O的解又A11不等于0β=(A11,A12.A1n)^T构成AX=O的基础解系AX=

行列式不等于0可以怎么证明?

若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵

线性无关等价于gram行列式不等于0?怎么证明?

若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵

齐次线性方程组的系数行列式|A|=0,A为n*n的矩阵,而A中某元素代数余子式不等于0.写不开了.见补充

证:因为|A|=0,所以r(A)=n-1.故r(A)=n-1.所以齐次线性方程组AX=0的基础解系含n-r(A)=1个解向量.所以AX=0的任一个非零解都是它的基础解系.因为AA*=|A|E=0.所以

为什么方程组有无穷解系数行列式等于0

这是针对齐次方程而言的,也就是针对Ax=0而言的.两边同取行列式,|A||x|=0如果|A|≠0,则x有无数解,如果|A|=0,则x只有零解,这也是一个结论.但对于非齐次方程,即Ax=b,b≠0,则方

已知3阶方阵A的行列式|A|=a不等于0,则行列式|-2A|=

|-2A|=(-2)^3*a=-8a再问:矩阵A=211160为()定矩阵。103