limq趋近于无穷时怎么求极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:09:41
题目不清楚,x次方是分式的,还是分母的?
应该考虑变量替换,用t=1/x...因为,x趋近于无穷时,sinX和cosX极限不存在···变量替换后,选择洛必达法则···不过,我感觉,用用泰勒公式应该也行(变量替换后)···
可以证明 lim(x→0)[ln(1+x)]/x=1,从而x→0时,ln(1+x)~x所以 x→0,ln(1+2x)~2xx趋近于无穷,2ln[(x+3)/(x-3)]=2ln[1+6/(x-3)]~
不是说不能直接等于零,而是因为由于对于∞•0型情况的极限不全为零——要看具体情况.如果你做题做多,或者学习过泰勒公式,你应该发现上面的式子的极限不应该是零先给出你提出的问题证明过程,(见附
arctanx,当x趋近于正无穷,负无穷时,函数是的极限分别是π/2,-π/2;当x趋近于无穷时,函数没有极限.arccotx,当x趋近于正无穷,负无穷时,函数是的极限分别是0,π;当x趋近于无穷时,
这个极限不存在.如果取x=a[n]=2nπ→∞那么xcosx=2nπ→+∞如果取x=b[n]=(2n+1)π→∞那么xcosx=-(2n+1)π→-∞如果取x=(n+1/2)π→∞那么xcosx=0所
极限为1,sinx和cosx在x趋于无穷时,为-1和1之间震荡取值,对于x趋于无穷无影响,所以化简为x/x=1
x趋近于0时直接带入x趋近于无穷时是1的无穷型,直接用公式 limu^v=e^[lim(u-1)v]
|arctanx|limx趋于无穷arctanx/x=0再问:没看懂。。。再答:再问:哦哦,谢谢!再问:哎呀,再问:再答:在极限和微积分中,默认k=0,不用考虑其他。再答:再问:哦哦。谢谢!再问:太详
通过求x趋近无穷时,函数y=x的x次方根的极限来确定所求数列的极限.方法是y=x的x次方根的两边去自然对数函数ln得:lny=lnx/x其中,用罗比达法则:lim(x->∞)lnx/x=lim(x->
既然你明白极限为什么是0.那我就解释点其他方面.当N趋近于无穷时,含义应该是单指正无穷.而要有负无穷则要说明.就像一个数5,不特别说明的时候,单指正数5.而不包含负数.再问:那这种算数列极限么?还有就
limxlnx=limlnx/(1/x)=lim(1/x)/(-1/x²)=lim-x=0
tan(pie/4+1/x)=(1+tan1/x)/(1-tan1/x)令t=1/x;则t趋向于0lim(t→0)[(1+tant)/(1-tant)]^1/t=lim(t→0)[1+2tant/(1
sinx在[-1,1]上变化,可能为正,也可能为负,xsinx的极限是不存在的.
连续用[k]+1次洛必达法则即可.其中[k]表示对k取最大的不超过k的正整数.原式=limkx^(k-1)/(a^x*lna)=limk(k-1)x^(k-2)/[a^x*(lna)^2]=limk(
利用等价无穷小来计算,原式=lim1/x/x^2=lim1/x^3=0
n→∞,limn[ln(n-1)-lnn]=limn*[ln(n-1/n)]=lim[ln(1-1/n)^n]因为函数f(x)=lnx连续,所以归结得:lim[ln(1-1/n)^n]=ln[lim(
猜测你漏了3个括号[(x-1)/(x+2)]^(x+1)=[1-3/(x+2)]^(x+1)={[1-1/(x/3+2/3)]^(x/3+2/3)}^[(x+1)/(x/3+2/3)]然后取极限令t=
原式=lim(x→+∞)x[(4x²-1)-4x²]/[√(4x²-1)+2x]【分子有理化】=lim(x→+∞)-x/[√(4x²-1)+2x]=lim(x→