lim n趋于正无穷 xn xn 1=0 证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:33:15
{Xn}有界,说明存在N,使得│Xn│≤NlimXn×Yn≤lim(N×Yn)=N*limYn因为limYn=0所以N*limYn=0,即limXn×Yn=0
答案好像是0分子有界,分母趋向无穷整体趋向0
硬往洛必达上凑,lnx-3x=ln(x/e^3x)x/e^3x用洛必达得lim1/(3e^3x)=0+(正无穷小)于是答案为负无穷
证明:x趋于正无穷时,f(x)存在,故存在b,b>a.当x》b时,|f(x)|《M1又y=f(x)在[a,正无穷]上连续,当然在[a,b]上连续,故当x在区间[a,b]时,|f(x)|《M2所以:|f
结论是错误的吧X趋于1的话极限是0因为y=lnx是连续函数所以定义域内每一点的极限都等于其函数值所以Lim(x趋于1)lnx的极限是0Lim(x趋于e)lnx的极限才是1
对任给的ε>0(ε1/(2ε)^2,于是,取N=[1/(2ε)^2]+1,则当n>N时,有 |√(n+1)-√n|根据极限的定义,成立 lim(n→inf.)[√(n+1)-√n]=0.
显然,a≠-1∵lim(x->∞)[√(x²-x+1)-ax-b]=0==>lim(x->∞){[x²-x+1-(ax+b)²]/[√(x²-x+1)+ax+b
不放心的话,给分子添个负号好了,然后极限式外面再添个负号.
这样,比如x/y是一个“无穷/无穷”的形式,你可以这样变一下:x/y=(1/y)/(1/x)这样不就是“0/0”形式么~
设f(x)=sinx/根号x,需证对任意的ε>0,存在X>0,当x>X时,恒有|f(x)-0|0,当x>X时,恒有|f(x)-0|
lim(2^n-3^n)/4^n=lim(1/2)^n-lim(3/4)^n=0-0,因为1/2
首先根据:limn趋近于无穷(n/n-5)^n-6=limn趋近于无穷{[(1+5/n-5)]^n-5/5}^(5/n-5*n-6)=e^5limn趋近于无穷(n/n+5)^n+1=limn趋近于无穷
原式=lim(1+2+……+n)/n^2=lim[n(n+1)/2]/n^2=1/2lim(n+1)/n=1/2*lim(1+1/n)=1/2*1=1/2
正确,极限不存在(但可以表示为limx→+∞lnx=+∞)再问:对对,答案就是这个,我还以为这两者不一样呢。原来是一个意思啊--
先除开,前者极限是1/2,后者是(1/2x)乘以cosx,(1/2x)是x趋于正无穷时的无穷小,而cosx有界,根据无穷小的性质,(1/2x)乘以cosx的极限为0,故原式极限为1/2.
上面的那位(一布衣半书生)的解法是错误...无穷多个'零'相乘不等于零...我用高等数学的无穷级数来证明...会用到一点点级数收敛的基本知识:记级数{An}(那个n是下标),An=a^n/n!,则{A
必要性:因为limf(x)=A【x趋于无穷大】,所以任给正数ε,存在正数M,当│x│>M时,有│f(x)-A│M时,有│f(x)-A│