等边三角形ABC中,点D,E分别在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:15:04
设CE=X∵△ABC是等边三角形∴∠C=60°∵DE⊥AC∴∠CDE=30°∴CD=2CE=2X∵AD⊥BC∴∠CAD=30°∴AC=2CD=4X∴AE=AC-CE=4X-X=3X∴CE比AE=1/3
证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形
分析:(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=
1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)
(1)看三角形ABD和三角形BCEBD=CEAB=BC角ABD=角BCE两边夹一角完全相等,所以此两个三角形完全相同.所以,角BAD=角CBE.(2)角AFD=角BFD;角BFD=180-角FBD-角
1.证三角形ABD与三角形CAE全等,用边角边.AB=AC,BD=AE,60度角2.全等之后,角BAD=角ACE所以,角DAC=角ECB又角DFC=角DAC+角ACE,所以,角DFC=角ECB+角AC
60度三角形ADC全等于BEA角DAC=角ABE角BFD=角BAD+角ABE=角BAD+角DAC=60度
要是相似,必须有60度的角.那就只有三个黄色的三角形了.但是根据小写字母a,b,c等等,长度也看不出有等量关系或者比例关系.后头那个大题目最好自己完成.不太费事.网友们估计也该喝杯水啦.再问:第二题题
∠bpd=60°在等边△abc中ac=bc,∠acb=∠bac=∠acd+∠bcd=60°又ad=ce所以△acd≌△cbe(边角边)所以∠acd=∠cbe∠bpd是△bcp的外角∠bpd=∠bcd+
因为,BD=CE,∠ABD=∠BCE,AB=BC,所以,△ABD≌△BCE,可得:∠BAD=∠CBE,∠APE=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°.
三角形ABC等边,于是AB=BC,∠ABD=∠BCE=60°,又BD=CE,所以△ABD≌△BCE(SAS),∠BAD=∠CBE,所以∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°
因为:BD=CE又因为:AC=BC所以:AE=CD三角形ABE与三角形ACD中,AE=CDAB=AC角BAE=角ACD所以,三角形ABE与三角形ACD全等,所以有:角ABE=角CAD角APE=角ABE
这是步骤:∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌
(1)答案为:=.(2)答案为:=.证明:在等边△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,∵EF∥BC,∴∠AEF=∠AFE=60°=∠BAC,∴AE=AF=EF,∴AB-A
AB=BCBD=CE
证明:∵△ABC是等边三角形,∴AB=AC=BC,∠C=∠ABC=60°,∵AE=CD,∴EC=BD;∴△BEC≌△ADB(SAS),∴∠EBC=∠BAD;∵∠ABE+∠EBC=60°,则∠ABE+∠
先提醒你一下,数学几何题中,注意直线这些字眼,因为这种字眼多存在两种情况,所以楼上的回答是不全面的.1.点E在射线AB上时,作EF垂直CD,三角形EFB为含60度的直角三角形(与ABC是对顶角),所以
(1)E为AB的中点时,AE与DB的大小关系是:AE=DB.理由如下:∵△ABC是等边三角形,点E是AB的中点,∴AE=BE;∠BCE=30°,∵ED=EC,∴∠ECD=∠D=30°,又∵∠ABC=6
因为是正三角形所以六边形是正六边形将六边形分成6个等边三角形(把所有对角线连起来)六边形边长为1,所以正三角形边长为1一个三角形面积:/2=根号3/26个就是3倍根号3答案就是3倍根号3(分数、根号不