等边三角形ABC中,以BD为直径作园O,交AC与另一点E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:21:44
EC=BD理由如下:∵△ABE和△ACD都是等边三角形∴AE=AB,AD=AC∠EAB=∠DAC=60°.∵AE=ABAC=AD∠EAC=∠EAB+∠BAC=60+∠BAC=∠DAC+∠BAC=∠BA
因为三角形ABC为等边三角形所以BC=AC,角BCA=60°又因为三角形DCE为等边三角形所以DC=CE,角DCE=60°所以角BCA=角DCE所以角BCA-DCA=角DCE-DCA即角BCD=ACE
利用三角形的全等即可证明.DC=AC∠DCB=∠ACEBC=EC△DBC≌△AEC(SAS)所以可证BD=AE
证明:∵⊿ACD和⊿BCE都是等边三角形∴AC=DC,BC=EC,∠ACD=∠BCE=60º∴∠ACD+∠ACB=∠BCE+∠ACB即∠DCB=∠ACE∴⊿DCB≌⊿ACE(SAS)∴BD=
角BCE=角ACD=120所以三角形BCE全等于三角形ACD所以角EBD=角MAD又因为AC=BC角MCB=角ACN=60所以三角形MCB全等于三角形ACN所以CM=CN
1.我的思路是,由题设不难证三个三角形ABD,BCE,ACF全等,进而知三角形CEF为正三角形,进而知四边形BDFE的两组对边相等,即四边形BDFE为平行四边形,故BE平行DF.BE=AD=DF=AF
1.三角形ABD和ACE啊证明:边AB=ACAD=AE因为角BAD+角DAC=角EAC+角DAC所以角BAD=角EAC两边夹一角相同,这两个三角形也就相同了.2.因为1两个三角形相等,所以角ABD=角
1、 还要添加条件 AB=BC;是的;∵△ABE和△ACD都是等边三角形,∴∠BAE=∠CAD=60°∴∠EAC=∠BAD=∠BAC+60°又∵AB=AE,
1、BC=AC,CD=CE,∠BCD=∠ACE=60°故△BCD≌△ACE(SAS)2、因为CD=CE,且D为AC中点,那么DE=DA,进而∠DEA=∠DAE又∠CDE=∠DEA+∠DAE=60°,因
∵等边△ABC∴AC=BC,∠ACB=60°同理可得,CD=CE,∠BCD=60°∴∠ACB=∠BCD∴在△ACE和△BCD中,AC=BD∠ACB=∠BCDCD=CE∴△ACE全等于△BCD(SAS)
(1)EC=BD证明:因为△ABE和△ACD均为等边三角形,且角EAB=角CAD=60°所以AD=AC,AB=AE.角EAC=角BAD=60°+角BAC,所以△EAC和△BAD全等,所以EC=BD(2
先证明△ABD≌△BCE因为AB=BC∠ABC=∠ACB=60°BD=CE所以AD=BE又等边△ADF所以AD=DF所以BE=DF因为△ABD≌△BCE所以∠BAD=∠CBE∠ADB=∠BEC∠C=∠
证明:∵∠ABC=∠EBD=60°∠ABE=∠ABC-∠EBC∠CBD=∠EBD-∠EBC∴∠ABE=∠CBD又∵AB=CB,BE=BD∴△ABE≌△CBD∴AE=CD∵AD=AC+CD∴AD=AC+
1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,
⊿ABC为等边三角形吧.∵⊿ABC、⊿ABD、⊿ACE为等边三角形.∴AB=BD=AD=AC=CE=AE,∠DBC=∠DBA+∠ABC=∠ECA+∠ACB=∠ECB.连接CD、BE,则.⊿DBC≌⊿E
∵∠ABE=∠ABC-∠EBC=60°-∠EBC∠DBC=∠DBE-∠EBC=60°-∠EBC∴∠ABE=∠DBC∵AB=AC,BE=BD∴⊿ABE≌⊿CBD∴AE=CD∵AD=AC+CD∵三角形AB
证明:∵ΔABE与ΔACD是等边三角形,∴AE=AB,AC=AD,∠AB=∠CAD=60°,∴∠EAB+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴ΔAEC≌ΔABD.再问:第二部那是角什么
因为等边三角形ABC、BDFBE=BD,BA=BC,∠FBD=∠ABC=60所以∠FBA=∠DBC所以△FBA≌△DBC因为D、E分别是AC、BC的中点所以BD⊥AC,AE⊥BC,BD平分∠ABC所以
证明:因为等边三角形ABC中,D,E分别为AC,BC的中点,所以AE⊥BC,BD⊥AC,∠CBD=30°,BD=AE又因为等边三角形BDF所以BF=BD,∠FBD=60°,∠BDF=60,所以BF=A