立体由圆柱面x^2 y^2=R^2与x^2 z^2=R^2所围成- 只

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:18:08
立体由圆柱面x^2 y^2=R^2与x^2 z^2=R^2所围成- 只
计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2

根据圆柱面的面积公式,ds=2πRdz把x^2+y^2=R^2带入原积分得到原积分=∫ds/(x^2+y^2+z^2)=∫(0->h)2πRdz/(R^2+z^2)=2π∫(0->h)d(z/R)/[

在空间直角坐标系中,方程x^2+y^2-2y=0的图像是圆柱面 为什么?

x²+y²-2y+1=1x²+(y-1)²=1此方程在z=0平面上是一个圆心在(0,1,0),半径为1的圆而z可取任意值所以x²+y²-2y

求由锥面z=k/R *√x²+y²(这是根号下)z=0及圆柱面x²+y²=R&#

对于z=F(X,Y),A=∫∫DDA=∫∫D√[1+(FX)2+(Fy)的表面积2]DXDY锥面Z=√(X2+Y2)是圆柱形表面X2+Y2=2倍的切削积分区域D为:0≤X≤2,-√(2X-X2)1,0

求锥面z=根号(x^2+y^2)被圆柱面x^2+y^2=2x割下部分的曲面面积(是曲面积分),

对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y&#

求底圆半径相等的两个直交圆柱面X^2+Y^2=R^2 及X^2+Z^2=R^2所围立体的表面积

用积分求啊,相交区域等分为八个区域,在第一象限求了之后乘以八就行了

二重积分的计算问题~求由平面z=x-y,z=0与圆柱面x^2+y^2=2x在z>=0中所围成的空间体的体积.积分区域底面

=∫∫zdxdy=∫∫(x-y)dxdy而积分区域底面是一个圆弧.由圆x^2+y^2=2x与y=x相交围成利用极坐标=∫∫r(cosθ-sinθ)rdrdθ而积分区域变为r^2=2rcosθ,所以为r

计算曲面积分(如图),其中∑是介于平面Z=0和Z=H(H>0)之间的圆柱面x^2+y^2=R^2

设x=ρcosθ,y=ρsinθ那么x²+y²=ρ²=R²原积分就变为∫(0到2π)∫(0到H)1/(R²+z²)dzdθ=2π∫(0到H)

计算由曲面z=1-x^2-y^2与z=0所围成的立体体积

这题用二重积分,三重积分都可求得.

求曲面积分zdS,Σ是圆柱面x^2+y^2=1,平面z=0和z=1+x所围立体的表面

圆柱面x^2+y^2=1的投影的面积0,只计算平面z=0和z=1+x即可,而平面z=0代入为0平面z=1+x的投影:x^2+y^2

锥面z^2=x^2+y^2被圆柱面x^2+y^2=2ax所截部分的曲面面积

∵锥面z²=x²+y²被圆柱面x²+y²=2ax所截∴所截部分的曲面面积在xy平面上的投影是D:x²+y²=2ax∵αz/αx=x

计算曲面积分I=∫∫ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=R^2被x+z=

这个圆柱面在xoy上的投影为0所以dxdy=0写出圆柱面的参数方程x=Rcost,y=Rsint,0

计算立体的体积,其中立体由旋转抛物面z=x^2+y^2与平面2x-2y-z=1围成

换算成柱坐标方程抛物面z=x^2+y^2为z=ρ^2;平面2x-2y-z=1为z=2ρ(cosθ+sinθ)-1它们的交线为ρ^2=2ρ(cosθ+sinθ)-1→cosθ+sinθ=(1/2)(ρ+

求由圆柱面x2+y2=2ax,旋转抛物面az=x2+y2及z=0所围成的立体的体积

在电脑上画这种图确很困难,就免了吧!此类二重积分最好用极坐标进行计算.积分域D:由x²+y²=2ax,得(x-a)²+y²=a²,这是一个园心在(a,

求由柱面x^2+y^2=Rx和球面x^2+y^2+z^2=R^2所围成的立体的体积

由对称性,只需计算xy平面上方部分的体积然后乘以2即可.记D={(x,y):x^2+y^2

求平面3x+2y+z=1被圆柱面2x^2+y^2=1截下部分的面积

先求椭圆面的面积再求椭圆面与平面的夹角用椭圆面的面积除以夹角的余弦值可得截下部分的面积