积分1 x(1-x*x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:59:23
令t=x*sqrt(x);原式则=2/3*∫sqrt[1/(1-t)]dt=-4/3sqrt(1-t)+C=-4/3*sqrt[1-x*sqrt(x)]+C
∫x/(1+x²)dx=1/2*/d(1+x²)x/(1+x²)=1/2*ln(1+x²)+C
过程很简单,用第二类换元积分法便可解决请看图:
∫x/[(x^2+1)(x^2+4)]dx=1/3∫x[1/(x^2+1)-1/(x^2+4)]dx=1/3[∫x/(x^2+1)dx-∫x/(x^2+4)dx]=1/3[1/2∫1/[(x^2+1)
∫(x+1)/[(x-1)(x^2-1)]dx(题目,是不是都是分母?)=∫(x+1)/[(x-1)(x-1)(x+1)]dx=∫1/(x-1)²dx=-1/(x-1)+C要是答案认可的话,
考试时间紧迫,快点写上吧!如果(1+x)在根号外面:∫1/√x(1+x)dx设√x=t,则x=t²,dx=2tdt所以:原式=2∫dt/(1+t²)=2arctant+C=2arc
你把分子X改成X+!-1就行了
x²/(1+x²)=1-1/(1+x² ∴∫1-1/(1+x²)dx=x-∫1/(1+x²)dx=x-arctanx+c再问:再问:箭头指的再答:你
de^x=e^xdxdx/1-e^x=1/e^x-e^2xde^x=1/t-t^2dt(其中t=e^x)=(1/t+1/1-t)dt=d(lnt-ln1-t)固dx/1-e^x=d(lne^x-ln(
解∫1/(1-x)²dx=-∫1/(1-x)²d(1-x)=-∫1/u²du=-(-1/u)+C=1/u+C=1/(1-x)+C
4/1怎么回事啊
原式=∫xdx/(1+x^2)-∫arctanxdx/(1+x^2)=1/2*∫d(1+x^2)/(1+x^2)-∫arctanxdarctanx=1/2*ln(1+x^2)-1/2*(arctanx
dx/x(1+x^4)=x^3dx/x^4(1+x^4)=dx^4/4(x^4+x^8)=dx^4/4x^4+dx^4/4(1+x^4)=(lnx^4)/4-ln(1+x^4)/4上下同乘x^3,就很
如果是∫ln(1-x)/xdx∫ln(1-x)/xdx=∫ln(1-x)d(lnx)=-∫ln(1-x)d(ln(-x))=∫ln(1-x)d(ln(1-x))=(1/2)(ln(1-x))^2+C再