矩阵a的平方=a署名什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:13:28
矩阵a的平方=a署名什么
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对

矩阵A满足A的三次方=0,求(E+A+A的平方)的负一次方

因为(E+A+A^2)(E-A)=E+A+A^2-A-A^2-A^3=E所以E+A+A^2可逆,且E+A+A^2的逆为E-A

设A平方+A=E 证明(A-E)可逆 并求(A-E)的逆矩阵

A^2+A=E所以A^2+A-2E=-E,即(A+2E)(A-E)=-E,因此-(A+2E)(A-E)=E.同理(A-E)[-(A+2E)]=E所以(A-E)可逆,逆矩阵为-(A+2E)

A为三阶方阵a为三维列向量 a,Aa,A的平方a线性无关,A立方a=5Aa-3A平方a,求证矩阵【a,Aa,A四次方a】

A^4a=A(A^3a)=A(5Aa-3A^2a)=5A^2a-3A^3a=5A^2a-3(5Aa-3A^2a)=14A^2a-15Aa(a,Aa,A^4a)=(a,Aa,A^2a)KK=10001-

设n阶矩阵A满足A(的平方)-A-2E=0,证明A及A+2E都可逆,并求出这两个逆矩阵

移项:A^2=A+2E两边同乘以A^(-2)就得到:E=(A+2E)^A*(-2)

矩阵A的平方等于A ,能不能推出A=E

能因为A²=A可以得到A是可逆的然后在左右两式的左边乘上A的负一次方就可得到结果A=E再问:怎么判断一个矩阵是否可逆,除了行列式为0再答:因为A²=A就说明了该矩阵可逆再答:再答:

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设A是n阶可逆矩阵,且A平方=/A/E,证明A的伴随矩阵A*=A

若A不可逆,则|A|=0.因为AA*=|A|E,所以AA*=0,又A*可逆,则A=0,这与A*可逆矛盾.所以A可逆

已知A为实对称矩阵,A的平方=0.求证:A=0

反证法:设A为实对称矩阵,并且A不等于零,不妨设A的第i行有一个非零元素,则A的平方的第i行第i列处的元素是A的第i行元素的平方和,由前面的假设,A的平方将不等于零,矛盾.

求助啊~线代的题不会了.矩阵A平方等于A,其中A为nxn矩阵,则求证RANK(A)=a11+a22+a33+...+an

这个有点麻烦.先给你说思路,不明白再追问吧a11+a22+a33+...+ann是A的迹,它等于A的所有特征值之和.所以需证明A的秩等于A的所有特征值之和由A^2=A知A可对角化由A(A-E)=0知A

设A是2阶非零矩阵,A的平方等于O矩阵,求A的秩

R(A)=1.A为非零矩阵.所以R(A)>0.若R(A)=2则detA不为零det(A*A)=det(A)det(A).命题得证!

求所有平方等于零的非零矩阵A

记D=diag(D1,D2,...,Dk)为块对角阵,其中Di是一阶或者2阶,一阶时Di=0;二阶时Di=(01;00);且至少有一个二阶的Di存在,P是任意的n阶非奇异矩阵,则A=PDP^(-1)是

若矩阵A的平方等于矩阵A,则A的特征值为?

A的特征值或为0或为1.设A的特征值为a,则存在非零向量x有Ax=ax故A^2x=A(ax)=aAx=a^2x由A^2=A得Ax=a^2x于是得ax=a^2xa=a^2解得a=1或a=0,

已知矩阵a=100 001 010 求这个矩阵的平方,有什么快速的方法啊,

现将第二列和第三列交换a=-|100010001|a平方=|100010001|

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

矩阵A的立方=2E,B=A的平方+2A+E.证明:B可逆,并求B的逆矩阵.

B=(A+E)^2A^3=EA^3+E=3E(A+E)(A^2-A+E)=3E(A+E)^(-1)=(A^2-A+E)/3B^(-1)=[(A+E)^(-1)]^2=[(A^2-A+E)/3]^2再问

矩阵证明题 设A的平方=A,证明E+A可逆 并求出

拿你这题来说等式右边凑出一个k*E等式左边凑出一个(A+E)(A+mE)既(A+E)(A+mE)=kE然后拆开:A^2+(m+1)A+mE-kE=0与A^2-A=0比较系数得m+1=-1m-k=0求出

矩阵A的平方等于矩阵A,那么矩阵A有什么性质?

1.A^2=A,即是A^2-A=0,即A(A-E)=0,所以R(A)+(A-E)小于或等于n,又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,于是R(A)+(A

矩阵A的平方等于LA,r(A)=1,则L具有什么性质

秩为1的矩阵有个特点,就是一定可以写成一个列向量乘以一个行向量设A=αβ’(α,β都是列向量)则A^2=αβ’αβ’=α(β’α)β’注意到,(β’α)正好是A的迹tr(A)(把A写出来很容易看出来)