矩阵AB=O,且A,B非0,则A的行向量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:05:14
楼上犯了想当然的错误.事实上应该是(-1)^{mn}ab,可以直接用Laplace定理,也可以把A逐列向左移.
AB=0|AB|=0|A|*|B|=0|A|=0或|B|=0
行列式等于零,Ax=0有非零解,所以存在B.(简单只需取一个解,加上n-1个零解,构成B)
因为AB=0,所以B的列向量都是齐次线性方程组Ax=0的解所以B的列向量可由Ax=0的基础解系线性表示所以r(B)=1只能得到r(A)
R(A)+R(B)再问:能具体解释一下吗再答:可用基础解系证明。设R(A)=r,R(B)=s由AB=O知道,B的列向量都是AX=O的解向量,但B的列向量组只是AX=O的所有解向量的一个部分组,所以B的
证明:必要性.因为存在一个非零矩阵B,使得AB=O所以B的列向量都是AX=0的解向量所以AX=0有非零解所以|A|=0.充分性.因为|A|=0,所以AX=0有非零解b1,...,bs令B=(b1,..
设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2
因为A是m*n矩阵,则r(A)
你的条件少了,应当是AB均为n阶非零矩阵
(1)r(A)=nAX=0X只有零解所以B就是零解组成的矩阵,即零矩阵(2)AB=AA(B-E)=0由(1)知道(B-I)=0B=I
如果A可逆的话是n*n的
因为AB=0r(A)+r(B)=1r(A)
知识点:齐次线性方程组AX=0只有零解的充分必要条件是r(A)=n(1)记B=(b1,b2,……,bn),由AB=0,知b1,b2,……,bn是Ax=0的解因为r(A)=n,所以Ax=0只有零解所以b
n值为AB所共有那么只能把AB和n作比较如果是A行秩B列秩的话(既引入m又引入s)无法比较
设r(A)=a,则可分解A=Pdiag(T,O1)Q,其中T为aXa的对角阵P,Q分别为m阶和n阶可逆方阵,O1为(m-a)X(n-a)的零矩阵令B=Q^(-1)diag(O2,S),其中O2为aX(
好好把线性代数再翻一翻.这个是个非零矩阵的反证问题.若AB为零,则根据其逆矩阵和B矩阵可逆堆出A矩阵为零.与假设相反.
A=1.2.-12.-1.a3.a-2.1AB=0r(A)+r(B)《3r(A)〈3r(A)=2A=1.2.-10.-5.a+20.a-8.4-5/(a-8)=(a+2)/4a^2-6a+4=0a怎么
AB=AC,则A(B-C)=0所以B-C是由Ax=0的解空间中向量构成的矩阵A即便不是零矩阵,只要A的行列式等于0,Ax=0也能有非零解,故B-C可以不等于零而A是m*n矩阵,r(A)=n时,Ax=0
因为A,B非零,所以r(A)和r(b)>=1,又因为AB=0所以A存在非零实数解,所以r(A)
选C.这是因为:记A的列矩阵是A1,.An;B的行矩阵是B1,.Bn.由于AB=0所以(A1,...An)B=0因为B是非0矩阵,所以矩阵B至少有一列的元素不全为零,所以(A1,...An)乘以这一列