矩形abco中mnpo的面积为2o为坐标原点反比例函数y=kx经过b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:28:31
矩形abco中mnpo的面积为2o为坐标原点反比例函数y=kx经过b
在长为10,宽为6的矩形中,截去一个矩形,使得留下的矩形与原矩形相似,问留下矩形的面积是多少?

截去的矩形宽为6*(6/10)=3.6所以留下的矩形长为10-3.6=6.4所以面积=6*6.4=38.4刚才看错题目了,我看成是截去的与原矩形相似,估计答案也是这么做的而它要求的是留下的矩形与原矩形

初三数学问题,如图在直角坐标系中,矩形ABCO的顶点B(a,b)在第一象限,且

(1)由题知,因为a²-4≥0且4-a²≥0得a=2﹙﹣2舍去,因为点B在第一象限﹚则原式为:2√ab=a+b所以a=b=2则B(2,2)C(0,2)A(2,0)(2)设点E(0,

如图在直角坐标系中,矩形ABCO的顶点B(a,b)在第一象限,且

你是几年级啊,我曾经写过第三问的过程,不知道你能不能看懂,我给你个地址,你先看看吧.再问:你好,我是九年级的,三角函数还没学再答:那好吧,我想想其他做法。余弦定理,你学过没有,如果学过,我马上给你写过

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点

正如楼主所说,还有2个等腰三角形.由OA=OC+2,OA*OC=15可得:OA=5,OC=3,OE=√61/25分别以O、A为圆心,以OA为半径画圆,可分别交EB、EC于P、P’点.显然OP=OA,A

如图1,矩形ODEF的一边落在矩形ABCO的一边上,并且矩形ODEF∽矩形ABCO,其相似比为1 :4,矩形ABCO的边

⑴√3⑵0≤x≤√3/3时,y=3x/2x>√3/3时,y=√3-1/2x(3)存在,分析E点的运动轨迹,以OE为半径画圆,OE=2CA=8因为CA一定所以高最短面积最少,高最大面具最大所以OE延长线

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,

(1)在矩形OABC中,设OC=x则OA=x+2,依题意得x(x+2)=15解得x1=3,x2=-5(不合题意,舍去)∴OC=3,OA=5.(2)证明:连接O′D,在矩形OABC中,OC=AB,∠OC

长方形ABCO中,三角形ABD的面积比三角形BCD的面积大10平方厘米,求阴影部分面积

由已知问题可得dbc的面积为10,若dbc为等腰直角三角形就可求出cd的长度,cd=ao,即此圆半径,可求出此圆面积,因为abcd为长方形∴阴影部分面积为圆形面积的四分之三

已知矩形ABCO在直角坐标系的第一象限内,如图,点A,C的坐标分别为(1,0)(0,3),现将矩形ABCO绕点B逆时针旋

1、首先,连接BO和BO'.因为BO和BO'为矩形ABCO旋转前及旋转后的对角线,所以BO=BO',△BOO'为等腰三角形.又因为BA垂直OO',所以△BAO与△BAO'是全等三角形.可以推出AO=A

二次函数解直角坐标系如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B

(1)在Rt△B′OC中,tan∠OB′C=,OC=9,∴.………………………………………………………………………2分解得OB′=12,即点B′的坐标为(12,0).………………………………………3分

在直角坐标系中放入一个边长为OC=9,BC=15的矩形ABCO,将它翻折,点B落到X轴,极为B’,折痕为CE

(1).由题意知OC=9,BC=15,可知B'C=15,又因为OC=9,由勾股定理可知OB'的平方=(15*15-9*9).顾OB'=12,所以B'A=15-12=3.设B'E=X,则AE=9-X,因

在直角坐标系中,四边形ABCO是矩形(矩形在第一象限,且A,C分别在x轴,y轴上),B的坐标为(a,b),

√(a-4)+a+b-2√ab=0等价于√(a-4)+(√a-√b)2=0(这里的2为平方)即a=4,b=4OB=4√2

矩形ABCO的面积为10,OA比OC大3,E为BC的中点,以OE为直径的⊙O'交x 轴于D,DF⊥AE于F.

1、设OC长x,则OA长x+3,依题意,x(x+3)=10即(x-2)(x+5)=10解得,x=2或x=-5(舍去)2,、连接O‘D做DG‖OE交AF于G,则四边形DGEO’是菱形连接DE,DE=2设

如图6 在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B在坐标为(1,3)将矩形沿AC翻折,

过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE

如图,在平面直角坐标系中,矩形ABCO的面积为15,且OA=OC+2,E为BC的中点,以OE为直径的⊙O′交y轴于D点,

(1)∵OA•OC=15,OA=OC+2,∴OC(OC+2)=15,解得OC=3或OC=-5(负值舍去).∴OA=5,OC=3.(2)证明:∵OE为⊙O′的直径,交y轴于D点,∴∠ODE=90°.∵四