矩形ABCD中,E是BC的中点,点F在AB上,角DEF等于90度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:58:12
解题思路:考查了直线与平面平行、平面与平面平行的判定和性质,及中位线的性质解题过程:
由矩形ABCD,DE⊥AM可得△ADE∽△ABM,则:DEAB=ADAM,得DE=AD•ABAM=aba2+(12b)2=2ab4a2+b2.
因为两个矩形相似∴AB:AE=AD:EF根据已知条件可得:AE=AD/2EF=AB∴AD^2=2AB又,AB=1∴AD=√2∴S=AB×AD=√2
因为EF、GH分别是△ABC、△ACD的中位线所以EF//=GH=AC/2可知EFGH是平行四边形因为EF//AC且AC⊥BC所以EF⊥EH所以EFGH是矩形
(1)菱形连接MN,由矩形对称性可知MN为其对称轴容易证明Rt△MNB≌Rt△MNC,且NE,NF是直角三角形斜边上的中线∴有ME=EN=NF=FM,∴四边形MENF是菱形(2)对角线相等的菱形是正方
由第一问可知△ABE∽△DCG,得到AB/BE=CG/CD,得到CG=1/2,那么EG=3/2,同理可以得到△EFG∽△DCG,得到EG/FG=DG/CG,在直角三角形CDG中,CD=1,CG=1/2
(1)∵矩形ABCD∴∠B=∠C=90°∵AF⊥DF∴∠GEF+∠EGF=90°∵∠DGC=∠EGF,∠AEB=∠GEF【也可用∠1∠2表示】∴∠DGC+∠AEB=90°∵∠BAE+∠AEB=90°∴
(2)拟用面积投影定理.求得:PD=AC=根号(20)=2根号5.AE=根号5,角PDC=90度.求得CE=根号(5+4)=3.在三角形AEC中,用余弦定理,得cos角EAC=[5+20-9]/[2*
矩形ABCD∽矩形EABF∴AE/AB=AB/AD然后计算即可,你题缺条件
2ab除以根号(4a平方+b平方)
设AE=BC=2a,则CE=BE=a,AD=BC=AE=2a,∠AFD=∠B=90°,∠ADF=90°-∠DAE=∠BAE△ADF≌△EAB,可知:AF=BE=a所以:EF=AE-AF=2a-a=a=
因为E,F分别是矩形ABCD一组对边AD,CB的中点所以BF=1/2BC因为矩形AEFB∽矩形ABCD所以AB:BC=BF:AB即AB×AB=BC×BF设BC=2,则BF=1/2BC=1AB×AB=2
证明:已知E,F分别是PB,PC的中点,那么:在△PBC中,EF//BC又底面四边形ABCD是矩形,那么:AD//BC所以:EF//AD又AD在平面PAD内,EF不在平面PAD内所以由线面平行的判定定
连接直角三角形ABE斜边上的中线为BF因为直角三角形斜边上的中线等于斜边上的一半所以BE=BF=根号2,因为E为BC边的中点所以BC=2根号2因为BE=根号2,AE=2根号2根据勾股定理可得AB的平方
由△ABE≌△DCE可知△AED是等腰直角三角形再由勾股定理求出AD=4,AB=2∴矩形的面积为8
因为EB=ECEA=EDAB=DC所以三角形ABE全等于三角形DCE所以角B=角C又因为ABCD是平行四边形所以角B+角C=180度所以角B=角C=90度所以ANCD为矩形
证明:连结AF、OF.不妨设AB=2,BC=2√2.∵AB/BC=FC/OC=√2:1,∴∠AFB=∠OFC,∴AF⊥FO而EO⊥面ABCD,∴AF⊥EF
∵ABCD是矩形∴∠B=∠BAD=90°,AD=BC=2b∵E是BC的中点∴BE=1/2BC=b∴AE=√(AB²+BE²)=√(a²+b²)∵DF⊥AE∴∠A
因为ae=2根号2ab=be根据勾股定理ab的平方+be的平方=ae的平方所以ab=be=2因为e是中点所以bc=2be=4所以S四边形=ab*bc=2*4=8C四边形abcd=ab+bc+cd+da