矩估计和极大似然估计求出的θ估计量不相同
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:54:35
为书写方便设θ=mE(x)=1*m²+2*2m(1-m)+3*(1-m)²=3-2mm的拔=(1+2+1)/3=4/3=E(x)=3-2m则m的矩估计=5/6似然函数L(m)=m&
见图再问:你好,你的答案前面和后面我都仔细看懂了,X(n)的概率密度为什么是nX(n-1)/θ(n)?真诚期待你的答案。再答:你看看教材吧。最大次序统计量的概率密度如何求,教材上明明白白地写着啊。在独
两种方法的原理不一样作出来的估计量表面看起来也很不一样但是当有具体数据计算估计值的时候就会发现两者的计算结果是差不多的因为这两个都是根据大量实例总结出来的经验公式都会与客观事实非常接近的再问:帮我做道
参数为δ.L(δ)=f(ξ1,ξ2,...,ξn;δ)=f(ξ1)f(ξ2)...f(ξn)=[(1/2δ)^n]*exp{-(1/δ)(|ξ1|+|ξ2|+...|ξn|)}为方便暂记|ξ1|+|ξ
设X~EXP(入)E(X)=1/入^入=1/(xbar)L(入|x)=π(连乘符号)(i=1~n)入e^(-入xi)两边取对数,并使ln(L)=ll(入|x)=ln(入^n)+(-入)Σ(xi)求导l
.求极大似然函数估计值的一般步骤:(1)写出似然函数;(2)对似然函数取对数,并整理;(3)求导数;(4)解似然方程所谓矩估计法,就是利用样本矩来估计总体中相应的参数.最简单的矩估计法是用一阶样本原点
极大似然估计法就是是L值最大,中间可用求导或取对数来判断.矩估计就是用样本的同阶矩来估计总体的同阶矩,可以是中心同阶矩也可以是原点同阶矩.通常用X的平均值和B2.不理解的话可以继续问.
详细解答如下,点击放大:
设总体X的概率密度为f(x)=Өx^(Ө-1),0
E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;
用公式计算即可,经济数学团队帮你解答.请及时评价.
C.若存在Xi=min(X1,X2,..,Xn).此时似然函数就是e^-(X1+X2+..+Xn-ntheta)theta取min(X1,X2,..,Xn)达最大
矩估计法EX=∫xf(x)dx=(θ+1)/(θ+2)--->θ=(1-2EX)/(EX-1)极大似然法L(x,θ)=(θ+1)^n(x1.x2...xn)^θLn(L(x,θ))=nLn(θ+
再答:�����再问:??再答:什么情况?再问:能帮我做一下再问:新的问题再答:可以再问:发图噢再答:你发过来吧再问:再答:不好意思力学都忘了再问:……再答:你什么专业?
所谓估计就是用样本的值来近似代替总体中未知参数的值,所以:既然λ的似然估计是X的均值,那它平方是的似然估计就是样本均值的平方.极大似然估计
额这个问题专业的说还好才学过···钜估计是指依据格里文科定理(即总体特征数可以用样本特征数来估计)利用样本的钜来估计总体的未知系数的方法例如总体密度函数为p(x;a,b)x1,x2,```xn是一个样