真空中有孤立的均匀带电球体和均匀带电球面
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:22:04
球体内部的电荷是为0的,所有二者的静电能是相同的
“均匀带电球面内部电场为零”,这要由高斯定理来回答:电场线起于正电荷,终止于负电荷,如果球面带正电,由于球面内部不带电,而无穷远处电势为零,相当于存在负电荷,所以电场线射向无穷远处,不会存在于球面内部
黑洞blackhole一团物质,如果其引力场强大到足以使时空完全弯曲而围绕它自身,因而任何东西,甚至连光都无法逃逸,就叫做黑洞.不太多的物质被压缩到极高密度(例如将地球压缩到一粒豌豆大小),或者,极大
1题取高斯面为半径为r的与球体同心的球面,由对称性,此面上个点场强大小相等方向沿径向,由高斯定理∮sEds=(1/ε0)∫ρdVr≤R时得E1*4πr^2=(1/ε0)ρ(4/3)πr^3E1=ρr/
外面是均匀球壳便可以无视,所以内部就无视外侧的球壳,将内侧的球视为在圆心的点.在球外视为球心的点即可
用高斯定理做就可以球面的话r小于等于R时场为零,因为球面内部没有电荷分布,而球体的话如果是均匀带电球体内部是有场分布的再问:能告诉下具体怎么求吗?再答:
e=Qr/4π爱普戏弄零(R的三次方)(rR)v=3Q/8π爱普戏弄零R-Q(r的平方)/8π爱普戏弄零(R的三次方)(rR)
分情况考虑,当点r(PQ距离)>R时,根据高斯定理(电通量φ=E*s=4πkQ)可知,P点所在以球壳球心为球心的球上各处电场相等,带电球壳对P点产生的电场等于球壳球心对其产生的电场,再由高斯定理推出E
电荷密度没打出来呢?比如分别为+σ1和+σ2.设电荷面密度为+σ1的为板A,电荷面密度为+σ2的为板B.A板产生的场强大小为E1,根据其对称性,对板A取一圆柱形高斯面,高斯面截面积为s根据高斯定理∮E
要看两带电球是否能被看作质点
带电球体接触电荷量平分,两小球带同种电荷所以排斥.根据库仑定律F=k.Q.q/r^2可知接触后距离不变电荷量乘积改变(后是前的8分之1)所以是0.125
库伦定理在任意r处都有E=Q/4πεr^2而电荷量是总量的3次方的比Q=q*r^3/R^3最后E=qr/4πεR^3不难看出其实就是正比于到球心的距离
真空中有两个大小相等的带电球体,带电量分别为Q和-8Q,相距为r(r远大于球半径)时,它们之间的静电引力为:F=kQ(8Q)r2…①两个带电体接触后再分开,电荷先中和在均分,故均为-72Q,为排斥力,
应该选B.原因如下:根据高斯定理,两球外的电场分布是相同的,也就是说,再个球外面的的电场能量是相等的.但是,球面内部空间的电场为0,而均匀带电球体内部电场不为0(这个可以算,不难,先定性地说吧),所以
1.设未被挖时均匀带电球体在空腔所在位置处的场强,因为是均匀带点球体,直接采用高斯公式即可.2.再求出被挖去的球体在所求位置处的场强,同样利用高斯公式.3.将一和二求出的场强进行矢量相减即可得所求.
根据高斯定理解E=d/e0E为射出高斯体的“净”电场强度,d为面电荷密度,e0为真空介电常数.当高斯体包括两个板时,射出高斯体的“净”电场强度为E0*2/3,所以E0*2/3=(dA+dB)/e0.当
一个均匀带电球体的电场相当于把电荷集中在中心的点电荷产生电场一个均匀带电球体外包围一个的带电球壳.因为球对称性,直接对空隙用高斯定理,在空隙里的电场就是把内部球的电荷集中在中心的点电荷产生电场,在球壳