相乘等于零的矩阵的秩之和小于n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:19:01
秩小于n的n阶矩阵的行列式一定为零.当m不等于n时,mxn矩阵没有行列式.
定理:如果AB=0,则秩(A)+秩(B)≤n.证明:将矩阵B的列向量记为Bi.∵AB=0,所∴ABi=0,∴Bi为Ax=0的解.∵Ax=0的基础解系含有n-秩(A)个线性无关的解,∴秩(B)≤n-秩(
有很多方法说明这个问题,这里告诉你其中一个先知道三个事实第一初等变换不改变矩阵的秩第二初等行(列)变换,相当于左(右)乘一个可逆阵.第三一个秩为r,可以只通过行(列)变换变成主对角线上只有r个1,其它
n阶矩阵的行列式就是这个矩阵的n阶子式.
因为0=det(A*A)=det(A)*det(A),所以det(A)=0,所以秩小于等于1.其中det()是矩阵的行列式.
C都小于n‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘再问:为什么?再问:为什么?再答:这个说起来麻烦了啊简单的说
会等于0矩阵两个矩阵相乘:1,1,11,12,2,2*2,23,3,3-3,-3新的矩阵的第a行第b列的元素等于第一个矩阵的第a行的元素分别于第2个矩阵的第b列的个个元素乘再相加.如这题中新矩阵的第3
证明:首先证明∑[i=1,n]λi^2=∑[i=1,n]∑[j=1,n]aijaji由于A^2的特征根为λ1^2,λ2^2,...,λn^2(想知道这个结论的证明可以另外定向提问)且特征跟的和即主对角
这是个定理,教材中应该有证明A的特征多项式f(λ)=|A-λE|一方面从行列式的定义分析它的λ^n,λ^(n-1)的系数及常数项另一方面f(λ)=(λ1-λ)...(λn-λ)比较λ^n,λ^(n-1
你的邮箱?再问:lh07090808@126.com再答:已发请查收
知识点:n阶方阵A的行列式等于0r(A)再问:为什么r(A^TA)
设A,B分别是m*s,s*n矩阵\x0d若AB=0\x0d则B的列向量都是AX=0的解\x0d所以r(B)所以r(A)+r(B)\x0d请看图片的证明:
AB=0则B的列向量都是齐次线性方程组Ax=0的解所以r(B)
不能,两个非零矩阵A,B相乘可以等于零矩阵,例如A=1-1-11B=2222则AB=0,但A,B都不为0.再问:我说的是对应的行列式为零再答:一定能推出。因为AB=0所以|AB|=|A||B|=0,行
反例12-30
∑aii=0∑(aiiajj-aijaji)=0|A|=0A*A降幂A幂零
矩阵的秩小于3,说明矩阵的最简行阶梯有一行为全零,根据行列式的性质,可知此时行列式为零,上三角的形式
首先,这个矩阵要有行列式,也就是说,它是个n行n列的矩阵,不然连行列式都没有,更谈不上行列式的数值.再次,n行n列情况下,秩小于未知数个数,是为零.
你说的结论不成立,图中即是一个反例.另外,以后提问请放在数学分类中.经济数学团队帮你解答,请及时评价.