幂零矩阵的问题设n阶矩阵A的特征值均为实数,且A的所有一阶主子式与二阶主子式之和都等于零,证明A是幂零矩阵.
幂零矩阵的问题设n阶矩阵A的特征值均为实数,且A的所有一阶主子式与二阶主子式之和都等于零,证明A是幂零矩阵.
A的所有奇数阶顺序主子式大于零,所有偶数阶顺序主子式小于零是什么矩阵?
如何证明该n阶矩阵的所有顺序主子式都大于0?
我想请教一下一个对称或者反对称矩阵A中,有一r阶主子式不为零,包含此主子式的r+1阶和 r+2阶主子式全为零
A为非奇异矩阵,且有分解式A=LU,L为单位下三角矩阵,U为上三角矩阵,求证 A的所有顺序主子式均不为零.
(试证:如果A是正定矩阵,那么A的主子式全大于零)怎么解答
设有实数域上n阶方阵A,A的顺序主子式全为正的,而且非对角元全为负的.证明:逆矩阵A^-1的每个元素全为正的.
m×n阶矩阵A的前r行和前r列分别线性无关,证明A的r阶顺序主子式可逆
设A B 均为n阶矩阵,且AB=O(零矩阵),则|A|和|B|都等于零.为什么啊 怎么推出来的
设A为n阶矩阵,证明A的转置与A的特征值相同.
设A为n阶矩阵,证明A的转置与A的特征值相同
怎样证明:一个矩阵为正定矩阵的充要条件为它的顺序主子式都为正?