直线l过抛物线y的平方等于2px的焦点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:16:05
直线l过抛物线y的平方等于2px的焦点
已知直线l过点M(4,0)且与抛物线y的平方=2px(p>0)交于A、B两点,以炫AB为直径的圆恒过坐标原点O.求抛物线

设直线与抛物线交点P(x1,y1),Q(x2,y2)设直线l方程,x=my+4,代入抛物线,整理得y^2-2pmy-8p=0y1+y2=2pm,y1*y2=-8p(1)x1*x2=m^2*y1*y2+

一道抛物线方程的题过抛物线y方=2px(p>0)的焦点F引方向向量a为(1,1)的直线l,该直线l与抛物线相交于两点P,

直线l的方程y=x-1y^2=x^2-2x+1=2pxx^2-(2+2p)x+1=0x1+x2=2+2p|PQ|=8=(p/2+x1)+(p/2+x2)=p+x1+x2=p+2+2pp=2抛物线方程y

点P在直线L:Y=X-1上,若存在过P的直线交抛物线Y=X^2于A,B两点,且PA的绝对值等于PB的绝对值,则称点P为好

首先求直线与抛物线的位置关系,设C为其交点坐标,根据题意,C同时满足等式⑴Y=X-1和⑵Y=X^2,即:X^2=X-1.根据求根公式:x=[-b±√(b^2-4ac)]/(2a),X=1/2±√(1-

已知抛物线方程y=4x平方 ,直线L过p(-2,1),斜率为K,K为何值时,直线L与抛物线只有一个公共点

设直线L方程为y=kx+b代入p点坐标:-2k+b=1所以b=2k+1L的方程是y=kx+(2k+1)L与抛物线y=4x^2只有1个交点,则交点M坐标(x,y)应同时满足以上两个方程,即:4x^2=k

P是抛物线C:y=1/2 X^2 上一点,直线l过点P并与抛物线C在点P的切线垂直,l与抛物线C交于另一点Q,当点P在

很高兴为您解答,【学习宝典】团队为您答题.请点击下面的【选为满意回答】按钮,

过点P(2,0)且斜率为K的直线L交抛物线Y的平方=2x于M(x1,y1)N(x2,y2)两点

由题设函数为y=kx+b带入点P(2,0)得到0=2k+b则b=-2k从而y=kx-2k因为直线L与y²=x交于两点则(kx-2k)²=xk²x²-4k

已知抛物线y平方=8x,直线l过抛物线的焦点F,且倾斜角为45,直线l与抛物线交于CD两点,

设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=

已知抛物线 y^2=x(y的平方等于x) ,直线L过点(0,1),且与抛物线只有一个公共点,求直线L的方程 最好有点过程

若斜率不存在,则x=0若斜率存在,则设直线为y=kx+1...①y^2=x...②联解得:k^2*x^2+(2k-1)x+1=0又只有一个公共点即△=0即k=1/4所以直线为y=(1/4)x+1或x=

已知抛物线C:y平方=2px(p大于0)的准线为L,过M(1,0)且斜率为根号3的直线与L相交于点A,与C的一个交点为B

因为直线AB斜率为根号3(倾斜角为60度),所以A在第三象限,因为向量AM=向量MB,所以B在线段AM延长线上,B在第一象限,且|AM|=|MB|,过B作BD垂直x轴于D,设抛物线准线与x轴交于点E,

已知过点(0,4),斜率为-1的直线l与抛物线C;y平方=2px(p>0)交于A,B两点.(1)求

C的顶点是原点,距离l2倍根号2l:y=-x+4(-x+4)^2=2pxx^2-(8+2px)+16=0中的横坐标为6所以x1+x2=12=8+2pxp=2焦点为(2,0)

已知过点(0,4),斜率为-1的直线l与抛物线C;y平方=2px(p>0)交于A,B两点.(1)求C的顶点到l的距离:

1、C的顶点是原点,距离l2倍根号2l:y=-x+4(-x+4)^2=2pxx^2-(8+2px)+16=0中的横坐标为6所以x1+x2=12=8+2pxp=2焦点为(2,0)

1.抛物线C:y的平方=2px(p>0)的焦点为F,过F的直线L与此抛物线C交于P,Q两点,且向量PQ=-2向量FQ

/>不妨先设P在x轴上方,设L:y=k(x-p/2),与y^2=2px联立,消去x,得y(P)*y(Q)=-p^2又由题,得y(P)=-2*y(Q)由两式可解得y(P)=p*√2,y(Q)=-p*√2

过抛物线y(平方)=2Px(P大於0)的焦点的直线L交抛物线于A,B两点,交准线于C如果(向量)CB=2(向量)BF,那

[CB]=2[BF][CB]:[CF]=2:3设B点的横坐标为x0、纵坐标为y0.则(x0+p/2);p=[CB]:[CF]=2:33x0+3p/2=2px0=3p/2,y0^2=3p^2y0=+-√

已知抛物线的方程为y平方=4x,直线L过定点P(-2,1),斜率为K.K为何值时,直线L与抛物线y平方=4x只有一个

y^2=4x;根据题意,直线的方程为:y-1=k(x+2),代入抛物线方程得到:(kx+2k+1)^2=4xk^2x^2+2(2k+1)kx+(2k+1)^2=4xk^2x^2+(4k^2+2k-4)