直径为10cm 弦AB=6cm p是弦
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:27:53
做这道题,首先画图象.因为CD为角ACB的角平分线,所以角ACD=角BCD又由同弧对应的圆周角相等可知:角DAB=角BCD又角ADE=角CDA所以三角形ADE与三角形CDA相似,故……变形得:
∵AB是直径∴∠ACB=90°∵AB=10,AC=6∴BC=8作DE⊥CA,交CA延长线于点E,作DF⊥BC,交BC于点F易证△ADE≌△BDF∴AE=BF∴6+AE=8-BF=8-AE∴AE=1∴C
无论点M在圆内还是在圆外,都有:AB=CD. 证明如下:一、图1时, ∵∠AMP=∠CMP,∴∠BMQ=∠DMQ,∴MQ是∠BMD的平分线. ∵PQ是⊙O的直径,∴O在MQ上,∴点O到BM、DM
连接OA,OB,作OE⊥AB,垂足为E.点P的位置有两种情况:①当如图位置时,由垂径定理知,点E是AB的中点,AE=EB=12AB=5,OA=7,由勾股定理得,OE=26,PE=1,∴AP=AE-PE
如图,作直径MN,使MN⊥EF于O,交AB于G,交CD于H;连接OA、OB、OC、OD;在Rt△OBG中,BG=3cm,OB=5cm,因此OG=4cm;同理:在Rt△OCH中,CH=4cm,OC=5c
AD=4√5如图如果您认可我的回答,请点击“采纳为满意答案”,谢谢!再问:你在那里找的?再答:青优网你好,还有无问题?没有请记得点击“采纳为满意答案”
3*3+4*4=5*5找出AB,CD的中点,连接到圆心,组成三角形利用上面的公式,得到O到AB的距离为3cm,O到CD的距离为4cm.
通过作图可以发现,OAB形成一个等腰三角形,底边长8,腰长10/2=5,OP的长度范围最长,即为腰长,最短即为O点至AB的垂线,对于这个直角三角形,斜边为5,一条直角边为8/2=4,所以另一条直角边O
分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,过O作OE⊥CD,交CD于点E,交AB于点F,连接OA,OC,∵AB∥CD,∴OE⊥AB,∴E、F分别为CD、AB的中点,∴CE=DE=12CD=
题不全,而且没有图撒.再问:则P有几个再答:P点有三个。
再答:不对告诉我,求采纳再问:在三角形ocp1后两步没看懂。。再问:我明是勾股,但是哪来的数据啊。。再问:哦哦哦懂了。。〒_〒再答:嗯,懂了就行
如图,有两种情况两幅图中,OM、ON均垂直于两条平行弦,且与平行弦相交于M、N已知AO=CO=5且AM=4,CN=3 (垂直于弦的半径平分该弦)所以有ON=√(5*5-3*3)=4OM=√(
如图,有两种情况两幅图中,OM、ON均垂直于两条平行弦,且与平行弦相交于M、N已知AO=CO=5且AM=4,CN=3 (垂直于弦的半径平分该弦)所以有ON=√(5*5-3*3)=4OM=√(
作OE⊥AB于点E则OE=10,OA=12.5根据勾股定理可得AE=7.5∴AB=2AE=15cm
过圆心O作弦AB的中垂线交AB于C,交圆周于D. 则OA=OB=5,BC=AB/2=2.5 &n
根据题意画出图形,如图示,作OM⊥AB于M,连接OA,∴AM=BM,CD=10cm,ND=3cm,∴ON=2cm,∵∠ONM=60°,OM⊥AB,∴MN=1cm,∴OM=3,在Rt△OMA中,AM=O
连接OA,OB.由勾股定理可得三角形OAB的AB边上的高为4cm.同理可得三角形OCD的CD边上的高为3cm.1.当AB、CD位于直径的同一侧,梯形ABCD的高为(4-3)cm=1cm.梯形的面积=(
因为AB为圆O的直径所以角ACB=90度因为AB=10,AC=6所以BC=8因为CD是角ACB的角平分线所以角ACD=角BCD=45度所以AD=BD因为AB为圆O的直径所以角ADB=90度,AD=BD