由曲面z=根号下x2 y2 与z=1 根号下1-x2-y2 所围立体的体积为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:11:07
由曲面z=根号下x2 y2 与z=1 根号下1-x2-y2 所围立体的体积为
求∫∫∫A(x^2+y^2)dv其中A是由曲线y^2=2z和x=0绕z轴旋转一周而成的曲面与平面z=4

旋转曲面方程为:x²+y²=2z,与平面z=4交线为:x²+y²=8∫∫∫(x²+y²)dv=∫∫∫r²*rdzdrdθ=∫[0→

求由旋转抛物曲面Z=x^2+y^2与平面z=1所围成的立体的体积

由旋转抛物面的性质,所围体积等于y=x²围绕y轴旋转所得体积,积分区域x(0,1)V=∫πx²dy=2∫πx³dx=π/2

z=xy是什么曲面

可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就

试求曲面z=1a

由题意,曲面与柱面的交线在xoy面的投影为x2+y2=a2所设所截的曲面为∑,则∑在xoy面的投影为D={(x,y)|x2+y2≤a2}∴所求曲面的面积为A=∫∫dS=∫∫D1+zx2+zy2dxdy

计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域

这种题目的基本思路是运用Fubini定理,必要时用极坐标换元.再问:Fubini定理是什么再答:fubini定理即富比尼定理,参考资料是百度百科。这个定理在微积分的书里一般都有,百科中的“σ-有限测度

计算由曲面z=x*x+y*y及平面z=1所围成的立体体积

z从0到1,立体垂直于z轴的截面为圆,半径r^2=x^2+y^2,面积s=πr^2=π(x^2+y^2)=πz.所以V=s(z)从0到1的积分,所以V=πz^2/2|(0,1)=π/2-0=π/2由旋

利用三重积分计算曲面z=6-x2-y2与z=x

设所围成的立体为Ω,则Ω的上半曲面是抛物面,下半曲面是开口向上的锥面,因此,宜用柱面坐标计算,又由z=6−x2−y2z=x2+y2⇒交线x2+y2=4z=2,Dxy:x2+y2≤4,而r≤z≤6-r2

已知|z-2|=根号下17,|z-3|=4,求复数z

设z=x+yi(x,y∈R)∵|z-2|=√17,∴z在以(2,0)为圆心,半径等于√17的圆上,故x,y满足(x-2)²+y²=17---------(1)∵|z-3|=4,∴z

曲面为锥面z=根号(x^2+y^2)与z=1所围立体的表面外侧,则∫∫xdydz+ydzdx+zdxdy=

可以直接使用高斯公式:没问题的话麻烦采纳吧,/

计算由曲面z=1-x^2-y^2与z=0所围成的立体体积

这题用二重积分,三重积分都可求得.

1.设z=z(x,y)是由方程式e的z次方=xyz所含的隐函数,求dz 2.计算出曲面z=2-x^-y^2与xoy坐标面

1e^z=xyze^zz'x=yz+xyz'xz'x=yz/(xy-e^z)=yz/(xy-xyz)=z/(x-xz)类似z'y=z/(y-yz)dz=[z/(x-xz)]dx+[z/(y-yz)]d

计算三重积分∫∫∫z方dxdydz,其中Ω由z=根号下x^2+y^2与z=1和z=2围成的空闭区

用柱坐标,积分区域:0≤r≤z,0≤t≤2π,1≤z≤2.∫∫∫z^2dxdydz=∫z^2dz∫dt∫rdr=∫z^2dz∫dt(z^2/2)=π∫z^4dz=π[z^5/5]=31π/5.

重积分:由曲面z=根号下(x2+y2)及z=x2+y2所围成的立体体积

极坐标求解围成区域z1在上z2在下z1=√(x²+y²),z2=x²+y²令z1=z2√(x²+y²)=x²+y²即r=

原题:计算三重积分,其中积分区域D是由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域.

先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:

由x+y+z=根号下xyz,确定z是x,y的函数,求dz

d(x+y+z)=d√(x+y+z)dx+dy+dz=1/2√(xyz)d(xyz)dx+dy+dz=1/2√(xyz)(yzdx+xzdy+xydz)(1-xy/(2√xyz))dz=[yz/(2√

计算三重积分∫∫∫zdxdydz,其中Ω由z=根号下x^2+y^2与z=4围成的闭区域.

原式=∫(0,4)dz∫∫(Dz)zdxdy=∫(0,4)zdz∫∫(Dz)dxdy=∫(0,4)z×πz^2dz=π∫(0,4)z^3dz=π×1/4×z^4|(0,4)=64π其中Dz:x^2+y

高等数学重积分的应用 求由曲面z=x²+y²,z=根号下(2-x²-y²)所围成

消去z,(x^2+y^2)^2=2-(x^2+y^2),(x^2+y^2)^2+(x^2+y^2)-2=0,{(x^2+y^2)-1][(x^2+y^2)+2]=0,后者大于零,则x^2+y^2=1,