由曲线y=x²-2x与直线x y=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:00:34
y=x和y=1/x交点(1,1)1
联立曲线与直线得y=x2+2y=3x,解得x=1y=3或x=2y=6设曲线y=x2+2与直线y=3x,x=0,x=2所围成的平面图形的面积为A则A=∫01[(x2+2)-3x]dx+∫12[3x-(x
什么叫圆形x=-1到0面积3分之10到23分之8一共3
设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&
由积分的知识有:S=积分(0,2)x^2dx=1/3x^3|(0,2)=1/3*2^3=8/3
y=1/xy=x求交点横坐标(1,1)(-1,-1)求定积分定积分x(x从0到1)+定积分1/x(x从1到2)=1/2x^2|(从0到1)+lnx|(从1到2)=1/2+ln2围成平面图形的面积=1/
曲线y=根号x与直线y=x交点是(0,0)与(1,1)由曲线y=根号x与直线y=x所围成的图形的面积S(上1下0)(根号x-x)dx=(上1下0)(2/3*x^(3/2)-1/2*x^2)=1/6
用微积分算∫(4,9)2√xdx=76/3
条件不全吧,两条直线怎么确定一个图形,若非要求它的面积为无穷大.
交点就是由xy=1和y=x联立得到A(1,1),xy=1和y=2联立得到B(1/2,2),以及y=x和y=2联立得到C(2,2)所求的平面图形的面积就是由ABC三点围成的图形面积.由xy=1和y=x联
联立两个方程求交点的x坐标:x²-1=x,求得x1=(1-√5)/2,x2=(1+√5)/2,那么两曲线围成的图形面积S=∫x1→x2(x^2/2-x^3/3+x)=(x2^2/2-x2^3
当x≥0时,曲线方程为y29-x24=1,图形为双曲线在y轴的右半部分;当x<0时,曲线方程为y29+x24=1,图形为椭圆在y轴的左半部分;如图所示,由图可知,直线y=x+3与曲线y29-x•|x|
V=∫(1,2)π(1/x)^2dx=-π/x|(1,2)=-π/2+π=π/2
取微元段 微元段体为圆柱 积分 答案如图 为π/2
由y=2−x2y=2x+2可得,x=0y=2或x=−2y=−2∴曲线y=2-x2与直线y=2x+2围成图形的面积∫0−2[2−x2−(2x+2)]dx=∫0−2(−x2−2x)dx=(−13x3−x2
用积分的方法,对(根号x)从0到1积分,去掉积分号就是2/3乘x^(3/2)从0到1,算得2/3,再乘两倍就是4/3
xy=1,则y=1/xY=2则x=0.5.所以0
原式=∫[1,2]dx∫[1/x,2]ye^(xy)dy=∫[1,2]dx∫[1/x,2]y/xe^(xy)d(xy)第一个对y的积分中x是常数=∫[1,2]1/xdx∫[1/x,2]yde^(xy)
由曲线xy=1及直线y=x的平方x=2,(加上x轴)所围平面区域的面积S=ʃ(0,1)x²dx+ʃ(1,2)1/xdx =1/3x³|(0,1)+ln
求由曲线xy=1,y=x²及直线x=2所围平面区域的面积.面积S=[1,2]∫(x²-1/x)dx=[(1/3)x³-lnx]∣[1,2]=8/3-ln2-1/3=(7/