由圆x² y²=2与平面区域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:50:25
求出两条直线的夹角tan()=1或者-1弧长在区域D一四象限从直线斜率看出在一四象限夹角为45所以弧长=pai/2再问:tan角为什么等于1再答:两天直线夹角公式在一四象限夹角为锐角再问:是根据Tan
均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0
若看不清,可点击放大.
直线y=x+1与抛物线y^2=1-x的交点满足这两个方程:y=x+1,y^2=1-x解得两个交点为:(0,1),(-3,-2).所以,直线y=x+1与抛物线y^2=1-x围成的区域为D:-2
这种题目的基本思路是运用Fubini定理,必要时用极坐标换元.再问:Fubini定理是什么再答:fubini定理即富比尼定理,参考资料是百度百科。这个定理在微积分的书里一般都有,百科中的“σ-有限测度
∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5
由曲线y=x^2与x+y=2所围成?y=x^2与x+y=2的交点(1,1)(-2,4)S=∫(-2,1)(2-x-x^2)dx=(2x-x^2/2-x^3/3)|(-2,1)=(1-1/2-1/3)-
=∫∫zdxdy=∫∫(x-y)dxdy而积分区域底面是一个圆弧.由圆x^2+y^2=2x与y=x相交围成利用极坐标=∫∫r(cosθ-sinθ)rdrdθ而积分区域变为r^2=2rcosθ,所以为r
①|x|≤5-5≤x≤5②|x+2y|≤4-4≤x+2y≤4③-4≤x+2y,x=-5时-4≤-5+2y,1≤2y,y≥1/2x=5时-4≤5+2y,-9≤2y,y≥-9/2∴取y≥1/2④x+2y≤
设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函
二重积分再问:请问能否解释下你的解题思路我不是很会再答:第一个等号:二重积分计算体积;第二个等号:二重积分坐标变换;第三个等号:二重积分化累次积分;第四个等号:。。。
把图形分解,从0到1,可以求出三角形面积为1/2从1到2,由定积分,可以解出为ln2-ln1=ln2所以总面积为1/2+ln2.
不等式x²-2x<0得0
当|x|
9/2可逆向x=y+2与x=y^2y+2=y^2解得y=-1y=2画图易得x=y+2在上方对(y+2-y^2)积分上下限分别是2和-1(1/2)*y^2+2y+(1/3)*y^3求得为4.5(9/2)
先积y,∫∫(2x-y)dxdy=∫[0→1]dx∫[3-x→2x+3](2x-y)dy=∫[0→1][2xy-(1/2)y²]|[3-x→2x+3]dx=∫[0→1][2x(2x+3)-(
S=∫(1,2)(x+1/x^2)dx=(x^2/2-1/x)|(1,2)=(2-1/2)-(1/2-1)=2
区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12 (x,y)∈D0