用初等行变换解方程组 2x1 3x2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:43:58
(11-22-31)等价(11-20-55)等价(11-201-1)等价(10-101-1)x1=x3x2=x3所以通解为x=c(1,1,1)T再问:谢谢!你能帮我看下http://zhidao.ba
1+r317280-53600515
在求解是不只是“用初等行变换或初等列变换”来求解矩阵的秩,还有一些深层次的求解方法,不过,我们用不着,理解上也有一定的难度,所以,只用一些初等的计算就行了.可以混用,但前提是“只能一步行,一步列”的使
(1)解:增广矩阵=2-13331-504-11313-13-6r3-2r1,r2-r1-r4,r1-2r40-729150-15301-5-313-13-6r1+7r3,r2+r3,r4-3r300
(1)三个方程式相加即10X1-3X2-8X3+(-6X1+2X2+5X3)+(-3X1+X2+2X3)=-35+22+10X1-X3=-3得X1=X3-3将X1=X3-3代入-3X1+X2+2X3=
用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=1-32100-30101011-1001第2行加上第3行×3,第3行减去第1行1
初等列变换很少用,只有几个特殊情况:1.线性方程组理论证明时:交换系数矩阵部分的列便于证明2.求矩阵的等价标准形:行列变换可同时用3.解矩阵方程XA=B:对[A;B](上下放置)只用列变换4.用初等变
无论行变换还是列变换,初等变换都不影响矩阵的秩,可以互换.行变换和列变换矩阵都是满秩的,行变换和列变换相当于乘以一个满秩的矩阵,不影响矩阵的秩.再问:你意思是不是满秩就不能混用吗?再答:乘以满秩矩阵不
增广矩阵A=1-1-1232-502-1-31r2-3r1,r3-2r11-1-1205-2-601-1-3r1+r3,r2-5r310-2-1003901-1-3r2*(1/3),r1+2r2,r3
这不是矩阵方程.AB15128BA=10-4120-34302再问:是这个,我发错了,老师,不好意思,再答:矩阵方程AX=B解:(A,B)=1-20-141-2-125-3121-3r2-r1,r3+
再问:这不是单位矩阵啊再答:少传了一个图补上再问:谢啦!再问:帮了大忙再答:不客气
不是的对于求秩无论行列的初等变换都可以哦~希望对楼主有所帮助,
利用矩阵的初等行变换求矩阵A=(-1,0,0;0,1,2;0,2,3)的逆矩阵A的-1次方看图矩阵A=(-1,0,0;0,1,2;0,2,3)令A=-1
题目是什么?是线性代数吧?
一般不能用列变换任一矩阵都可经初等行变换化为行阶梯型是否用列变换,关键要看用于解决什么问题.初等列变换很少用,只有几个特殊情况:1.线性方程组理论证明时:交换系数矩阵部分的列便于证明2.求矩阵的等价标
1-111001130102-32001r2-r1(第1行乘-1加到第2行,或第2行减1倍的第1行,以下同),r3-2r11-11100022-1100-10-201r2r3(第2,3行交换)1-11
2-r1-r3,r1-2r30-10-1120-10-11215201r2-r10-10-1120000015201所以r(A)=2梯矩阵的非零行的首非零元位于1,2列所以A的1,2列中必有最高阶非零
行变换不改变;想一想(1)交换两行,相当于将方程组中两个方程交换位置.(2)一行乘一个数加到另一行相当一个方程乘一个数加上另一个方程(3)一行乘一个非零数相当一个方程两边同乘一个非零数.这些变换都是可
三阶及以上的,用克拉莫法则计算量都太大,建议不要采用.楼上的乱说再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。