球极限arctan2根号1 x^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:19:21
球极限arctan2根号1 x^2
limx→+∞(根号x^2+x+1-根号x^2-x-3) 求极限

x→+∞lim√(x^2+x+1)-√(x^2-x-3)=lim(√(x^2+x+1)-√(x^2-x-3))(√(x^2+x+1)+√(x^2-x-3))/(√(x^2+x+1)+√(x^2-x-3

极限 x*arccosx-根号(1-x^2) x取向0

你给的是    lim(x→0)[x*arccosx-√(1-x²)]=0*(π/2)-1=-1.这怎么会是难题呢?估计原题不是这样的.

三角函数极限问题lim﹙x→∞﹚(sin根号x+1-sin根号x),

x→∞时x~x+1所以原式=0再问:完整表达过程再答:再问:如何得到再答:和差化积公式如果你上大学还不知道这个一定要赶快学

根号(1+3x)-根号三(1+2x)/x 求趋于0极限

=1+3x-(1+2x)/[根号(1+3x)+根号三(1+2x)]x=1/[根号(1+3x)+根号三(1+2x)]当x趋近于0时极限是1/2

求极限:lim(x→1)根号5x-4-根号x/x-1

lim[√(5x-4)-√x]/(x-1)(x→1)=lim[√(5x-4)-√x][√(5x-4)+√x]/{[√(5x-4)+√x]*(x-1)}(x→1)=lim(4x-4)/{[√(5x-4)

求极限 x->0 根号(1+sinx)-根号(1-sinx)/x 求

分子有理化有原式=lim2sinx/(x(根号(1+sinx)+根号(1-sinx)))=1/2*lim2sinx/x=1/2*2=1

2sinx-cosx=-1(答案是x=2kπ or 2kπ-2arctan2)

(2sinx-cosx)^2=1;4(sinx)^2+(cosx)^2-4sinxconx=1;3(sinx)^2-4sinxcosx=0,结合2sinx+1=cosx;可得答案

极限1-根号X的3次方 除以 1-根号X的平方 X趋近于1 求极限

根据洛必达法则分子分母分别求导再求极限就是lim(x→1)3x/2=3/2=1.5再问:谢谢不过洛必达法则我还没学希望能留个QQ交流

求极限lim(x→0)(1-根号cosx)/[x(1-cos根号x)]

/>用等价无穷小详细解答如图懂了请采纳o(∩_∩)o 

根号下1加x方 减去根号下x方减2x 求极限

利用(a-b)*(a+b)=a²-b²,分子分母同时乘以a+b,其中a=√(1+x²),b=√(x²-2x)原式=lim(x->+∞)(1+2x)/[√(1+x

sin根号x+1减去sin根号x在x趋于无穷大的极限.

lim{x->∞)sin√(x+1)-sin√x=lim{x->∞)2cos(√(x+1)+√x)/2*sin(√(x+1)-√x)/2=lim{x->∞)2cos(√(x+1)+√x)/2*sin[

求极限:x趋近于4时,函数[根号下(1+2x) -3]/(根号下x -2)的极限

4/3利用罗比达法则为0/0的形式分别对分子分母求导[根号下(1+2x)-3]’=1/2*(1+2x)^(-1/2)*2=(1+2x)^(-1/2)当x趋近4时1/2*(1+2x)^(-1/2)趋近于

求lim(x->0+) x/[根号(1-cosx)]的极限,

因为1-cosx等价于x^2/2,所以lim(x->0+)x/[根号(1-cosx)]=lim(x->0+)x/√(x^2/2)=1/√1/2=√2

lim x ((根号x 平方+1)-x )求极限

X->∞吧分子分母同乘以((根号x平方+1)+x),这样分母变为((根号x平方+1)+x),分子为x再上下同除以X,即可得1/2limx((根号x平方+1)-x)=limx(√(x^2+1)+x)(√

根号(x的平方+x+1)-根号(x的平方-x+1)的极限

应该求的是趋于无穷大时的极限吧将分子、分母同时乘以(sqrt(x^2+x+1)+sqrt(x^2-x+1))得:原式=2x/(sqrt(x^2+x+1)+sqrt(x^2-x+1))当x趋于负无穷时,

x趋于1根号x 乘sin(1/x)极限

=根号1*sin(1/1)=sin1

求极限 lim/x-0 (根号x+1) -1/x

上下同乘√(x+1)+1分子平方差=x+1-1=x所以原式=x/[x[√(x+1)+1]=1/[√(x+1)+1]x趋于0所以极限=1/[√(0+1)+1]=1/2

求极限x趋近于3,根号(x+13)-2*根号(x+1)/根号(x^2-9)

这个首先应该想到分子根号容易去掉,先去根号(分子分母同乘分子的有理化因式(≠0)):得到的式子做以下几步:1,把分母中的分子有理化因式提到极限外面(非零项)2,分子合并同类项,提取公因式,与分母因式分