球极限arctan2根号1 x^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:19:21
x→+∞lim√(x^2+x+1)-√(x^2-x-3)=lim(√(x^2+x+1)-√(x^2-x-3))(√(x^2+x+1)+√(x^2-x-3))/(√(x^2+x+1)+√(x^2-x-3
你给的是 lim(x→0)[x*arccosx-√(1-x²)]=0*(π/2)-1=-1.这怎么会是难题呢?估计原题不是这样的.
x→∞时x~x+1所以原式=0再问:完整表达过程再答:再问:如何得到再答:和差化积公式如果你上大学还不知道这个一定要赶快学
=1+3x-(1+2x)/[根号(1+3x)+根号三(1+2x)]x=1/[根号(1+3x)+根号三(1+2x)]当x趋近于0时极限是1/2
lim[√(5x-4)-√x]/(x-1)(x→1)=lim[√(5x-4)-√x][√(5x-4)+√x]/{[√(5x-4)+√x]*(x-1)}(x→1)=lim(4x-4)/{[√(5x-4)
分子有理化有原式=lim2sinx/(x(根号(1+sinx)+根号(1-sinx)))=1/2*lim2sinx/x=1/2*2=1
(2sinx-cosx)^2=1;4(sinx)^2+(cosx)^2-4sinxconx=1;3(sinx)^2-4sinxcosx=0,结合2sinx+1=cosx;可得答案
根据洛必达法则分子分母分别求导再求极限就是lim(x→1)3x/2=3/2=1.5再问:谢谢不过洛必达法则我还没学希望能留个QQ交流
/>用等价无穷小详细解答如图懂了请采纳o(∩_∩)o
利用(a-b)*(a+b)=a²-b²,分子分母同时乘以a+b,其中a=√(1+x²),b=√(x²-2x)原式=lim(x->+∞)(1+2x)/[√(1+x
lim{x->∞)sin√(x+1)-sin√x=lim{x->∞)2cos(√(x+1)+√x)/2*sin(√(x+1)-√x)/2=lim{x->∞)2cos(√(x+1)+√x)/2*sin[
4/3利用罗比达法则为0/0的形式分别对分子分母求导[根号下(1+2x)-3]’=1/2*(1+2x)^(-1/2)*2=(1+2x)^(-1/2)当x趋近4时1/2*(1+2x)^(-1/2)趋近于
因为1-cosx等价于x^2/2,所以lim(x->0+)x/[根号(1-cosx)]=lim(x->0+)x/√(x^2/2)=1/√1/2=√2
X->∞吧分子分母同乘以((根号x平方+1)+x),这样分母变为((根号x平方+1)+x),分子为x再上下同除以X,即可得1/2limx((根号x平方+1)-x)=limx(√(x^2+1)+x)(√
应该求的是趋于无穷大时的极限吧将分子、分母同时乘以(sqrt(x^2+x+1)+sqrt(x^2-x+1))得:原式=2x/(sqrt(x^2+x+1)+sqrt(x^2-x+1))当x趋于负无穷时,
=根号1*sin(1/1)=sin1
上下同乘√(x+1)+1分子平方差=x+1-1=x所以原式=x/[x[√(x+1)+1]=1/[√(x+1)+1]x趋于0所以极限=1/[√(0+1)+1]=1/2
这个首先应该想到分子根号容易去掉,先去根号(分子分母同乘分子的有理化因式(≠0)):得到的式子做以下几步:1,把分母中的分子有理化因式提到极限外面(非零项)2,分子合并同类项,提取公因式,与分母因式分