点P是角BAC的平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 05:35:48
分析:过P点作PE,PH,PG分别垂直AB,BC,AC,要证P在∠A的平分线上,则需证PE=PG,利用角的平分线上的点到角的两边的距离相等就可证明PE=PG.证明:过P点作PE,PH,PG分别垂直AB
证明:作PM⊥AD于点M,PN⊥BC于点N,PQ⊥AE于点Q∵BP是角平分线∴PM=PN∵CQ是角平分线∴PN=PQ∴PM=PQ∴P在∠BAC的平分线上∴AP平分∠BAC
过点P作PF⊥AE于F,PG⊥BC于G,PH⊥AD于H因为BP,CP分别是∠DBC和∠ECB的角平分线所以PF=PG,PH=PG所以PF=PH所以AP平分∠BAC
思路:不确定代数关系,可以通过集合关系来表示,如两边之和大于第三边,依此构建辅助线,将分散的线段转移至一个三角形中.作辅助线:延长BA到Q,并使得AQ=AC,连接PQ;因为已知AD是角CAQ的平分线;
证明:过点P分别过点P作PD⊥AM于D,PE⊥BC于E,PF⊥AN于F.∵BP、CP是△ABC的外角平分线,∴PD=PE,PE=PF,∴PD=PF.∴点P必在∠BAC的平分线上.(到角两边距离相等的点
过D点作3条边垂线,可知三条垂线相等,所以AD也是角BAC的平分线(因为BD是平分线,所以1=2;因为CD是平分线,所以2=3,所以1=3,所以AD也是平分线)再问:我还有几个问题你能帮我解答吗?再答
是的,有4个角相等三角形ACP是等腰三角形
第一步,连接点A和点P.过点P作垂线PL垂直AB,并且交AB的延长线于点L;过点P作垂线PM垂直BC,并且交线BC于点M;同样地,过点P作垂线PN垂直AC,并且交AC的延长线于点N.第二步,由BP是角
作PD⊥AB,PE⊥AC,PH⊥BC由角平分线上的点到两边的距离相等可知,PD = PH = PE两直角三角形的斜边和一直角边对应相等则两直角三角形全等所以PA
因为BP是∠DBC的平分线,所以P点到BD和BC的距离相同同理,因为CP是∠ECB的平分线,所以P点到CE和BC的距离相同所以P点到BD和CE的距离相同,即P点到AD和AE的距离相同所以AP是∠BAC
证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥A
证明:在AB边上取一点E,使AE=AC,连接EP,延长交于AC于F在△ADE和△ADC中∵AE=AC(已作)∠BAD=∠CAD(已知)AD=AD(公共边)∴△ADE≌△ADC∴PE=PC,∠AEP=∠
设∠BAC为x度.∴∠BAD=x/2(角平分线定义)∴∠CBP=(a+x)/2(角平分线定义)(三角形外角性质一)∴∠ABC=180°-x-a(三角形内角和为180°)∴∠P=180°-(a+x)/2
证明:过P作P⊥AB于M,PN⊥AC于N,PH⊥BC于H,∵△ABC的角平分线BM、CN相交于点P,∴PM=PH,PH=PN,∴PM=PN,∵PM⊥AB,PN⊥AC,∴AP平分∠BAC.
已知,点P在△ABC的外角平分线BP上,可得:点P到直线AB和直线BC的距离相等;已知,点P在△ABC的外角平分线CP上,可得:点P到直线AC和直线BC的距离相等;所以,点P到直线AB和直线AC的距离
过点P作PO1垂直BD于点O1过点P作PO2垂直CE于点O2过点P作PO3垂直BC于点O3由BP是角CBD的平分线,得PO1=PO3由CP是角BCE的平分线,得PO2=PO3所以,PO1=PO2故AP
过P点分别作AE\AD\BC\的垂线段,垂足分别为XYZ因为BP平公角CBD,所以PY=PZ,(角平分线的性质)同理可得PX=PZ得PX=PY=PZ,则AP平分∠BAC,(角平分线的性质逆定理)
证明:过点P分别作AM、BC、AN的垂线PE、PF、PD,E、F、D为垂足,∵CP是∠MCB的平分线,∴PE=PD.同理:PF=PD.∴PE=PF.∴点P在∠BAC的平分线上.
设AP与BC相交于点Q延长AB至D使得BD=BQ延长AC至E使得CE=CQ∵PB是ΔABC的外角平分线∴∠PBD=∠PBQ∵PB=PB(公共),BD=BQ(作图)∴ΔPBD≌ΔPBQ∴PD=PQ,∠P