点o为rt三角形abc斜边ab上一点,以oa为半径的圆o

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:13:51
点o为rt三角形abc斜边ab上一点,以oa为半径的圆o
如图 在RT三角形ABC中 角C=90度 点E在斜边AB上 以AE为直径的圆O与BC相切与点D 1求证AD平分角BAC

因为:圆O与BC相切与点D所以:OD⊥BC又因为:∠C=90°所以:AB⊥BC所以:OD//AB所以:∠CAD=∠ADO因为:OA=OD所以:∠OAD=∠ADO所以:∠CAD=∠OAD所以:AD平分∠

在RT三角形ABC中,角C=90度,以AC为半径的直径的圆心O与斜边AB相交于点E,OD平行AB,连接ED,则直线ED与

∵OD//AB,∴〈COD=〈A,(同位角相等),〈EOD=〈OEA,(内错角相等),∵OA=OE=R,∴三角形OAE是等腰三角形,则〈A=〈OEA,则〈COD=〈EOD,∵CO=OE=R,OD=OD

在Rt三角形ABC中,∠c=90°,以AC为直径的圆O与斜边AB相较于点D.若AC=4cm,BC=3cm,则CD等于多少

因为,三角形ABC是Rt三角形,所以,AB²=AC²+BC²=5cm.连接CD,又因为角ADC为圆O的直径(AC)所对的圆周角,所以角ADC=90°.所以,三角形ADC与

以Rt三角形ABC的直角边AC为直径的半圆O,交斜边于点D,OE平行bc叫AB于点E,求证:DE是圆的切线

证明:连接OD∵OD=OC∴∠C=∠ODC∵OE∥BC∴∠C=∠AOE,∠ODC=∠DOE∴∠DOE=∠AOE∵OA=OD,OE=OE∴△ODE≌△OAE∴∠ODE=∠ABC=90°∴DE是圆O的切线

如图,以Rt三角形ABC的直角边AC为直径做圆O交斜边AB于点E,半径OD垂直于AC,DE交AC于点H,过点E做一直线交

首先证明EF为圆O的切线连接OE,角EHF=FEF=DHOODH=OEHODH+OHD=90OEF=OEH+HEF=90故EF为圆O切线连接OG三角形CGO全等于EGOGC=GE角B+CAB=90°角

以RT三角形ABC的直角边AB为直径作圆O,与斜边AC交于点D,E为BC上中点,连接DE

解(1)证明:连接OD,OE,因为E为BC的中点,O为AB的中点所以OE平行与AC,所以∠EOB=∠BAC又∠DOE=∠ADO=∠BAC所以∠EOB=∠DOE在三角形DOE和三角形EOB中,DO=BO

如图,已知,以Rt三角形ABC的直角边AB为直径做圆O,与斜边AC交与点D,E为BC边上的中点,连接DE.求证:DE是圆

思路,只要证明ODE为直角即可.容易得知BDC为rt三角形,根据中线定理,DE=BE,又有OD=OB,连接OE,公共边,可得,三角形ODE全等OBE,则角ODE为直角.

1.如图1,以Rt三角形ABC的直角边AB为直径的圆O与斜边AC交与点D,点E是BC的中点.求证:DE是圆O的切线

1、证明:连接DO、BD.∵AB为直径∴角ADB=90°(直径所对的圆周角为90°)∵角ADB+角CDB=180°∴角CDB=180°-角ADB=90°角EDB标角1角EBD标角2角OBD标角3角OD

如图在rt三角形abc中角b等于90度,D为AB上的一点,以BD直径的半圆O与AC相切与点E,BD=BC=6,求斜边AC

∵∠B=90°,BD为直径,∴BC是⊙O的切线,∵AC切⊙O于E,∴CE=BC=6,连接OE,则OE⊥AC,∵∠AEO=∠B=90°,∠A=∠A,∴ΔAEO∽ΔABC,∴OE/BC=AE/AB,3/6

在RT三角形ABC中斜边AC为12,AB+BC=17,RT三角形ABC的面积为?

∵(AB+BC)²=AB²+BC²+2AB·BC,(平方和公式,勾股定理)17²=12²+4(½AB·BC),∴rt△ABC面积=½

如图,Rt三角形ABC中,D为斜边AB上一点,求证:DA=DC

有图没有再问:再答:再答:没事再问:“因为三角形ABC是Rt三角形“可改写成“因为在Rt三角形中“再答:按照你们现在上的课程来讲是要那么写,你就按你说的写也行,

全等三角形练习题1.已知:如图,在Rt三角形ABC和Rt三角形BAD中,AB为斜边,AC=BD,BC、AD 相交于点E.

(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E

如图,已知点O为Rt三角形ABC斜边AC上一点,以O为圆心,OA长为半径的圆O与BC相切于点E,与AC相交于点D,连接A

(1)在三角形AOE中,因为OA=OE,所以角OAE=角OEA,因为BC与圆O相切,所以OE垂直于BC,则角BAE=角OEA,所以角BAE=角OAE,则AE平分角CAB(2)没图,角1在哪

已知点e在rt三角形abc的斜边ab上 以ae为直径的圆o与直角边bc相切于点d 求证 ad平分角bac

证明:连接OD∵BC切圆O于E∴∠BDO=90∵∠C=90∴AC∥OD∴∠ODA=∠CAD∵OD=OA∴∠BAD=∠ODA∴∠BAD=∠CAD∴AD平分∠BAC

在RT三角形ABC中,角C=90°,以斜边AB上一点O为圆心,OB为半径圆O,圆O切AC于点E,交AB于点D

作DG⊥AC于G∵BC⊥AC,∴DG∥BC∴GE/EC=DO/OB=1又CE/AE=2/3∴AG/AC=1/5由DG∥BC∴∠AGD=∠ACB,∠ADG=∠ABC∴△AGD∽△ACB∴DG/CB=AG

已知:如图,Rt△ABC中,点D在斜边AB上,以AD为直径的⊙O与BC相切于点E,连接DE

(1)证明:连接OE,∵BC与⊙O相切于点E,∴OE⊥BC,即∠OEB=90°.∴∠OEB=∠ACB=90°.∴OE∥AC.∴∠F=∠OED.∵OE=OD,∴∠ODE=∠OED.∴∠F=∠ODE=∠A

以AB为斜边的Rt三角形ABC和Rt三角形ABD中,点E是AB中点,连接DC,过点E作EF垂直于CD,求证CF=FD

连接CE、DE,Rt三角形ABC和Rt三角形ABD中,CE=0.5AB、DE=0.5AB.则CE=DE,根据三线合一,则CF=DE

如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切

解题思路:(1)连AD,由AB为直径,根据圆周角定理得推论得到∠ADB=90°,从而有∠C+∠EAD=90°,∠EDA+∠CDE=90°,而∠CAB=90°,根据切线的判定定理得到AC是⊙O的切线,而