点g是三角形abc的重心
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:17:05
=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0
由于G是三角形ABC的重心,则有向量GA+向量GB+向量GC=零向量,即向量OA-向量OG+向量OB-向量OG+向量OC-向量OG=零向量故向量OA+向量OB+向量OC=3向量OG即λ=3
用极限法可以求出也可以用特殊形法
重心,三中线交点.连接AG交BC于D点,BD=1\2BC=4,AD=√AB平方BD平方=3,AG=2/3AD=2.
设AM是AB边上的中线,延长AM至D,使MD=AM,AD=2AM,向量AD=向量AB+向量BD,以下通为向量,2AM=AB+BD,AM=(AB+BD)/2,BD=AC,AM=(AB+AC)/2,AG=
取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形∴向量GB=向量CE∴向量GB+向量GC=向量CE+向量GC=向量GE由向量GA+向量GB+向量GC=0得:向量GB+向量G
设B点坐标(x1,y1),C点坐标(x2,y2),则BC中点坐标D((x1+x2)/2,(y1+y2)),重心G把AD分成2:1的关系,根据定比分点,x=(x1+λx2)/(1+λ),y=(y1+λy
连接AG交BC于F因为G是重心,所以AG/AF=2/3因为DE平行于BC,所以△ABC相似于△ADE.则三角形ADE与四边形DBCE的面积之比为(2/3)^2=4/9
三角形的重心到各边中点的距离等于这边上中线的三分之一.AG:GD=1:2AF:FC=AG:GD=1:2
AG^2+EG^2=AE^2=2^2=4BG^2+DG^2=BD^2=1.5^2=2.25根据三角形重心的性质,有AG=2DG,BG=2EG,代入上面两个式子,得4DG^2+EG^2=44EG^2+D
因为G是重心所以AD平分BC所以BD=DC因为GE//AB,所以角ABD=角GED又角ADB=角GDE所以三角形ADB相似三角形GDE所以|GD|/|AD|=|ED|/|BD|同理|GD|/|AD|=
重心G(-0.5,0),(xA+xB+xC)/3=-0.5(yA+yB+yC)/3=0xB+xC=1.5yB+yC=0XB²+YB²=9……①XC²+YC²=9
重心G(-0.5,0),(xA+xB+xC)/3=-0.5(yA+yB+yC)/3=0xB+xC=1.5yB+yC=0XB²+YB²=9……①XC²
在AB上取E点使AE=AB/3.设AC中点为D.BE/BA=BG/BD=2/3,∠ABD=∠EBG△ABD∽△EBG,EG//=2*AD/3=AC/3向量AE=三分之一向量AB向量EG=三分之一向量A
重心和三角形各个顶点的连线,把三角形的面积分成相等的三部分所以三角形BCG的面积=3cm^2
重心是三条中线的交点延长CG交AB于E,因为G是三角形ABC的重心,所以CE为斜边AB上的中线,所以CE=AE=BE所以角BAC=角ACE因为角ACB=角AGC=90度所以三角形CGA相似于三角形AB
因为向量BC=向量AC-向量AB,向量AG=1/3(向量AB+向量AC),所以向量BC*向量AG=1/3(|AC|²-|AB|²)=1/3(13²-5²)=14
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
首先,明确一个事实:在三角形ABC中,G为重心,那么有GA+GB+GC=0(当然,这些都是向量)(证明就是利用GA+GB,做平行四边行,为GC的相反向量而得)有了前面的铺垫,那么由OA+OB+OC=R
答案等于三分之二根号三