点e是三角形abc的内心,线段AE的延长线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:04:53
E是三角形ABC的内心->AE平分角CAB-》角CAD=角DAB-》DC=DBE是三角形ABC的内心-》BE平分角CBA-》角CBE=角EBA角DEB=角EBA+角DAB角DBE=角CBE+角DBC角
证明:连接BE∵E是△ABC的内心∴∠ABE=∠CBE,∠BAD=∠CAD∴弧BD=弧CD∴BD=CD∵∠BED=∠BAD+∠ABE,∠EBD=∠EBC+∠CBD又∵∠CBD=∠CAD=∠BAE∴∠D
(1)证明:∵∠BID=∠IBA+∠BAI(外角等于不相邻二内角和)∵I是内心,即是角平分线的交点,∴BI平分∠B,AI平分∠A,∴∠BID=(∠A+∠B)/2∵∠IBD=∠IBE+∠EBD,∠EBD
(1)∵∠BAD=∠ECD,∠ABD=∠CED,∴△ABD∽△CED,∴CD:AD=CE:AB,∴CD=3.证明:(2)连接IB.∵点I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠CBI,∴弧
∠BDE=1/2*(180度-1/2*(∠A+∠B))(1)∠BFE=180度-1/2*(180度-∠BDE)(2)联立(1)(2)可得∠BFE=135度-1/8*(∠A+∠B)∵∠A+∠B135度-
因为I是三角形ABC的内心,所以AI=2ID,又IE=4,AE=8,所以AI=8-4=4,所以ID=1/2AI=2,所以DE=AE-AI-ID=8-4-2=2
连接BI∵I是△ABC的内心∴∠BAI=∠CAI,∠ABI=∠CBI.弧BE=弧CE∴∠BAE=∠EBC∵∠BIE=∠BAI+∠ABI∠IBE=∠IBC+∠EBC∴∠EBI=∠EIB∴EB=EI
选CI是△ABC的内心,AE平分∠BAC,BI平分∠ABC∠1=∠2 ∠3=∠4弧EC=弧EC∠5=∠2 ∠1=∠5∠EBI=∠5+∠4=∠3+∠1=∠BI
∠BOC=180°-∠OBC-∠OCB=180°-∠ABC/2-∠ACB/2=180°-(∠ABC+∠ACB)/2=180°-(180°-∠A)/2=90°+∠A/2如仍有疑惑,欢迎追问.祝:
因为E是内心,所以EA、EB分别为∠A和∠B的角平分线,即∠BAD=∠DAC=∠A/2,∠ABE=∠EBC=∠B/2所以BD=CD因为∠DAC和∠DBC对应同一段外接圆弧CD,所以∠DBC=∠DAC=
已知I是三角形ABC的内心,故∠IAB=∠IAC,∠IBA=∠IBC.又∠CBE=∠CAE(圆周角相等),故∠CBE=∠IAB.又因∠EBI=∠CBE+∠IBC,∠EIB=∠IAB+∠IBA,故∠EB
证明:知道I就是圆心(由三角形外心的定义),则△ABE和△ACB是Rt△,AB⊥BEAC⊥CE而AE是角BAC平分线所以BE=EC,直角三角形ABE,I为AE中点,有AI=BI=EI所以可证得BE=E
(1)∵内心为角平分线的交点∴∠BAE=∠CAE∴BE=CE不可能出现BE=2CE的结果,所以无法解答(2)证明:∵I为内心∴∠CAI=∠BAI∠BCI=∠ACI∵∠BAI=∠BCE【同弧所对的圆周角
证明:∵I为内心∴AI为∠BAC角平分线∵∠BAD=∠BCD,∠CAD=∠CBDD∴∠BCD=∠CBD∴DB=DC∵∠ABI=∠CBI∵∠BID=∠ABI+∠BAI∠CBD=∠BAI∴∠BID=∠CB
延长BI,交圆I于F∵I为三角形的内心∴∠BIE=2∠BAE=2∠EAC,∠FBC=∠FBA∴∠FBC=1/2∠AIF=1/2∠BIE又同弧所对圆周角相等∴∠EBC=∠EAC=1/2∠BIE∴∠BIE
1,∠BAE=∠CAD ∠ABE=∠EBC∠DEB=∠BAE+∠ABE=∠CAD+∠EBC ∠CAD=∠CBD∠DEB=∠CBD+∠EBC=∠DBE故∠DB
I为内心,∠BAI=∠CAI,∠ACI=∠BCIABEC四点共圆∠BAI=∠BCE,∠CAI=∠CBE∠BCE=∠CBEBE=CE∠CIE=∠CAI+∠ACI=∠CBE+∠BCI=∠BCE+∠BCI=
连接BE,CD设AD与BC的交点为F则∠BFD与∠AFC相等又因为∠BAD与∠BCD相等(同一个圆内相等的弦对用的顶点在圆上的角相等,具体的定理我忘了,就这么个意思,你可以看看你的教科书,应该有)所以
延长BP交AC于F.由三角形外角定理,有:∠APF=∠BAP+∠ABP,又∠APF=∠EPB,∠BAP=∠CAE,∠ABP=∠CBP,∴∠EPB=∠CAE+∠CBP,而A、C、E、B共圆,∴∠CAE=
(1)△DEF是等边三角形.证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,∴△ADF≌△BED≌△CFE,∴DF=DE=EF,即△DEF