点e是三角形abc的内心 线段ae的延长线交
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:06:22
E是三角形ABC的内心->AE平分角CAB-》角CAD=角DAB-》DC=DBE是三角形ABC的内心-》BE平分角CBA-》角CBE=角EBA角DEB=角EBA+角DAB角DBE=角CBE+角DBC角
证明:∵E,F分别为AB,AC的中点∴EF‖BC∴△AEO∽△ABD∴AO:AD=AE:AB=1:2即O为AD的中点过点D作DM‖CP,交AB于点P在△BCP中∵BD=CD∴BM=MP在△AMD中∵A
证明:连接BE∵E是△ABC的内心∴∠ABE=∠CBE,∠BAD=∠CAD∴弧BD=弧CD∴BD=CD∵∠BED=∠BAD+∠ABE,∠EBD=∠EBC+∠CBD又∵∠CBD=∠CAD=∠BAE∴∠D
(1)证明:∵∠BID=∠IBA+∠BAI(外角等于不相邻二内角和)∵I是内心,即是角平分线的交点,∴BI平分∠B,AI平分∠A,∴∠BID=(∠A+∠B)/2∵∠IBD=∠IBE+∠EBD,∠EBD
∠A=a,∠B+∠C=180°-a点O是其内心,OB.OC分别为∠B,∠C的平分线∠OBC+∠OCB=1/2(180°-a)=90°-a/2∠BOC=180°-(∠OBC+∠OCB)=90°+a/2
证明:∵AF∥CE∴∠FAC=∠ACE又∵D是AC的中点∴AD=CD又∵DF在ED的延长线上∴∠ADF=∠CDE∴△ADF≌△CDE∴AF=CE已知AF∥CE∴□是平行四边形∴CF∥AE
因为I是三角形ABC的内心,所以AI=2ID,又IE=4,AE=8,所以AI=8-4=4,所以ID=1/2AI=2,所以DE=AE-AI-ID=8-4-2=2
这个我会;因为D是AC的中点(已知)所以AD=CD(中点定义)因为AF‖CE(已知)所以角AFD=角CED角FAD=角ECD(两直线平行,内错角相等)因为角AFD=角CED,角FAD=角ECD,AD=
选CI是△ABC的内心,AE平分∠BAC,BI平分∠ABC∠1=∠2 ∠3=∠4弧EC=弧EC∠5=∠2 ∠1=∠5∠EBI=∠5+∠4=∠3+∠1=∠BI
∠BOC=180°-∠OBC-∠OCB=180°-∠ABC/2-∠ACB/2=180°-(∠ABC+∠ACB)/2=180°-(180°-∠A)/2=90°+∠A/2如仍有疑惑,欢迎追问.祝:
因为E是内心,所以EA、EB分别为∠A和∠B的角平分线,即∠BAD=∠DAC=∠A/2,∠ABE=∠EBC=∠B/2所以BD=CD因为∠DAC和∠DBC对应同一段外接圆弧CD,所以∠DBC=∠DAC=
(1)设c为xa:b=b:x2:8=8:x2x=64x=32答:c=32(2)因为AB=2AD,AC=2AE,S三角形ABC:S三角形ADE=1:4S三角形ADE:S四边形DECB=1:3(3)因为A
已知I是三角形ABC的内心,故∠IAB=∠IAC,∠IBA=∠IBC.又∠CBE=∠CAE(圆周角相等),故∠CBE=∠IAB.又因∠EBI=∠CBE+∠IBC,∠EIB=∠IAB+∠IBA,故∠EB
证明:知道I就是圆心(由三角形外心的定义),则△ABE和△ACB是Rt△,AB⊥BEAC⊥CE而AE是角BAC平分线所以BE=EC,直角三角形ABE,I为AE中点,有AI=BI=EI所以可证得BE=E
证明:∵I为内心∴AI为∠BAC角平分线∵∠BAD=∠BCD,∠CAD=∠CBDD∴∠BCD=∠CBD∴DB=DC∵∠ABI=∠CBI∵∠BID=∠ABI+∠BAI∠CBD=∠BAI∴∠BID=∠CB
延长BI,交圆I于F∵I为三角形的内心∴∠BIE=2∠BAE=2∠EAC,∠FBC=∠FBA∴∠FBC=1/2∠AIF=1/2∠BIE又同弧所对圆周角相等∴∠EBC=∠EAC=1/2∠BIE∴∠BIE
因为o是三角形ABC的内心所以∠OBC=1/2∠ABC,∠OCB=1/2∠ACB因为∠BOC+∠OBC+∠OCB=180°所以∠OCB+∠OBC=180°-155°=25°所以∠ABC+∠ACB=2X
(1)△DEF是等边三角形.证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,AB=BC=CA,又∵AD=BE=CF,∴DB=EC=FA,∴△ADF≌△BED≌△CFE,∴DF=DE=EF,即△DEF
因为∠BIC=90+1/2∠A,∠BOC=2∠A所以90+1/2∠A=2∠A所以180=3∠A所以∠A=60度
I为三角形ABC的内心,所以I为三角形ABC角平分线的交点,则∠IBC=1/2∠ABC,∠ICB=1/2∠ACB.在三角形BIC中,∠BIC=180°-(∠IBC+∠ICB)=180°-1/2(∠AB