g为三角形abc的重心,过点G作DE BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:37:26
=0重心是三边中线的交点,延长GA交BC于O,再延长至P,得OP=GO根据中线的性质,GA=2GO,得GA=GP连接BP,CP得BOCP是平行四边形得题中等式=0
用极限法可以求出也可以用特殊形法
向量OH=向量OA+向量+OB+向量OC向量OG=(向量OA+向量OB+向量OC)/3,向量OG*3=向量OH所以O、G、H三点共线
取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形∴向量GB=向量CE∴向量GB+向量GC=向量CE+向量GC=向量GE由向量GA+向量GB+向量GC=0得:向量GB+向量G
所谓重心就是过此点的直线分割图形时,图形的两半质量(面积)相等.而直线若同时过重心G和一个顶点A,由于分出的两个三角形面积相等、并且又等高,因此AD=CD.这一点书上应该都会给出来.接下来就很好证明A
M,N,G三点共线==>向量NG=tNM==>AG-AN=t(AM-AN)==>AG=AN+t(AM-AN)==>tAM+(1-t)AN=AG
证明:如图:1、长AC,BG'交于N点,由于:BM=CM,GM=G'M所以四边形BG'CG是平行四边形.有:BH//DC、CL//BN因为:AL=LB,CL//BN所以:AC=
取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形\x0d∴向量GB=向量CE\x0d∴向量GB+向量GC=向量CE+向量GC=向量GE\x0d由向量GA+向量GB+向量GC
如图,连接AG并延长,交BC于H.∵点G为△ABC的重心,∴AG=2GH.∵DE∥BC,∴CE:AE=GH:AG=1:2,∵EF∥AB,∴CF:BF=CE:AE=1:2.故答案为1:2.
要解这个题目,首先要知道,由平面向量基本定理可推出:当向量a和b不共线时,若实数λ和μ满足λ*a+μ*b=0向量,则λ=μ=0.此题:设向量AB、AC分别为a、b,则AP=λ*a,AQ=μ*b,延长A
上面不是说了共线条件是:m+n=1(表达式1)将m=1/(3x)将n=1/(3y)将m,n代入表达式1不就是1/(3y)=1啊而不是你说的AG等于1;AG=1/(3x)AM+1/(3y)AN
第(1)问简单,不多说,第(2)问发了图片
三角形的重心到各边中点的距离等于这边上中线的三分之一.AG:GD=1:2AF:FC=AG:GD=1:2
重心和三角形各个顶点的连线,把三角形的面积分成相等的三部分所以三角形BCG的面积=3cm^2
∵P,G,Q三点共线∴存在x,y∈R使得,CG=xCP+yCQ,且x+y=1①∵G是三角形ABC的重心延长CG交AB于D,那么D为AB中点∴CG=2/3CD,而CD=(CA+CB)/2∴CG=(CA+
/>先回答第一个问题:这是一个向量共线的基本问题:如果向量满足OA=mOB+nOC的关系(其中m、n为非零实数),且A、B、C三点共线,则必有m+n=1;相反地,如果向量满足OA=mOB+nOC的关系
设AB=a(向量),AC=b.AG=(1/3)(a+b)=xa+t(yb-xa)=x(1-t)a+tybx(1-t)=1/3=ty.消去t,得到:1/x+1/y=3
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
Gx=(1+3+2)/3=2,Gy=(-8+2-3)/3=-3===>G(2,-3)直线BC的斜率:(-3-2)/(2-3)=5∴过三角形ABC的重心G且与BC边平行的直线方程:Y+3=5(X-2)=
答案等于三分之二根号三