FM是圆o的切线,切点为F FM平行bc,链接AF交bc于E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:12:01
FM是圆o的切线,切点为F FM平行bc,链接AF交bc于E
如图已知AB为圆O的直径,PA、PB是圆O的切线,A、C为切点 ∠BAC=30°

(1)连接OC,因为OA等于OC,角BAC等于30度所以角ACO=角BAC=30度所以角AOC=180°-30°-30°=120°又因为,PA、PB是圆O的切线所以PA⊥AD,PC⊥OC,所以角PAO

已知ab是圆o的直径 do垂直于ab于点o,cd是圆o切线,切点为c,求证角dce等于角dec

参考:如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O的切线证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对

AB是圆O的直径,AP是圆O的切线,A是切点 BP与圆O交于点C D为AP的中点 求直线CD是圆O的切线 (即证明∠OC

证明:连接AC、OC.∵AB是直径,点C在⊙O上.∴∠ACB=90°AC⊥PB在Rt⊿ACP中.点D是PA的中点.∴AD=PD=CD则:∠PCD=∠P,∠ACD=∠DAC.∵OA=OC∴∠OAC=∠O

如图,AB是圆O的直径,CE是切线,切点为C,BE垂直CE于E,叫圆O于D,求证AC=CD

证明:连接OC,OD∵CE是切线∴OC⊥CE∵BE⊥CE∴OC//BE∴∠AOC=∠ABD∵∠AOD=2∠ABD【同弧所对的圆心角等于2倍的圆周角】∴∠AOC=∠COD∴AC=CD【相等圆心角所对的弦

如图,已知AB是圆O的直径,AP是圆O的切线,A为切点,BP与圆O交于点C,D为AP的中点,求证CD为圆O切线

可以,但似乎太麻烦了.如下证明可否:连结AC、DC,∵AB是直径,∴∠ACB=90°,∴∠ACP=90°,∵D是AP中点,∴DA=DC,∴∠DAC=∠DCA,∵OA=OC,∴∠OAC=∠OCA,∴∠D

如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD

(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆

如图AB是圆O的直径 BC是圆O的切线 切点为B OC平行于弦AD

很好做的~因为OC‖AD所以∠COB=∠A,∠COD=∠ODA因为OA=OD所以∠A=∠ODA所以∠COB=∠COD于是△COD≌△COB所以∠COD=∠COB=90°,所以DC为圆O的切线

如图,已知AB是圆O的直径,CD、AB分别是圆O的切线.切点分别为D、B,求证OC平行AD

图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=

已知AB是圆心O的直径,BC是圆心O的切线,切点为B,OC平行弦AD,求DC是圆心O的切线

连DO∴∠DOC=∠ADO=∠DAO=∠COB又∵DO=BO,OC=OC∴△DOC≌△BOC∴∠ODC=∠OBC=90°∴DC是切线证毕

已知AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于AD,求证DC是圆O的切线

OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则

如图,AC是圆O的直径,PA,PB是圆O的切线,切点分别为A,B.OP与CB有怎样的位置关系

OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3

点P在圆O外,PC是圆O的切线,C为切点,直线PO与圆O相交于AB

3)∠A不可以等于45°,如图所示,当∠A=45°时,过点C的切线与AB平行4)若∠A>45°,则过点C的切线与直线AB的交点P在AB的反向延长线上.

如图,已知PA、PB是圆O的两条切线,A、B为切点,

证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO

p为圆o外一点,PA,PB为圆o的切线,A,B是切点,BC是直径.求证:AC‖OP

“樱之雪舞—欣”:OA⊥PA,OB⊥PB(半径⊥切线)PA=PB(圆外一点到圆的切线相等),OP=OP,∠PAO=∠PBO=90°△PAO≌△PBO∠POB=∠POA∠ACO=1/2(∠AOB=∠PO

如图,PA为圆O切线,A为切点,OP平分角APC 求证:PC是圆O切线

连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵PA是切线,AB是直径

如图,PA为圆O的切线,A为切点,OP平分角APC, 求证:PC是圆O的切线

连接oaoc,两个三角形相似,角pco等于九十度

如图,PA.PB是圆o的切线,点A.B为切点

S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2

已知AB是圆o的直径,AP是圆o的切线,A是切点,BP与圆o交于点C,若D为AP的中点,求证:直线CD是圆o的切线.

联结OD、OC,因D是AP的中点,O是圆心,所以OD是三角形APB的中位线,因此角ADO与角P相等,角PCDD等于角CDO,角OCB等于角DOC,角PCD加角DCA等于90°,所以角ODC加角DCO等

如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD,OA=r

(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC

AB是圆O 的直径,BC是圆O的切线,切点为B,OC平行于弦AD,OA等于5,求AD+OC最小值

设∠BOC=θ,则∠DAB=θ,AD=10cosθ,OC=5/cosθ,AD+OC=10cosθ+5/cosθ>=2根号(10cosθ*5/cosθ)=10根号2,cos^2θ=1/2,cosθ=根号