泊松分布的极大似然估计

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:05:12
泊松分布的极大似然估计
概率与数理统计 关于矩估计和极大似然估计的一道题,谁能给我写下答案..

为书写方便设θ=mE(x)=1*m²+2*2m(1-m)+3*(1-m)²=3-2mm的拔=(1+2+1)/3=4/3=E(x)=3-2m则m的矩估计=5/6似然函数L(m)=m&

一道概率论与数理统计的题目(求极大似然估计),

不难吧,按照正常的步骤即可得,答案应该是K/Xbar,Xbar是样本的均值.

概率论问题,求极大似然估计.

参数为δ.L(δ)=f(ξ1,ξ2,...,ξn;δ)=f(ξ1)f(ξ2)...f(ξn)=[(1/2δ)^n]*exp{-(1/δ)(|ξ1|+|ξ2|+...|ξn|)}为方便暂记|ξ1|+|ξ

设总体为指数分布,已知概率密度函数求参数的矩估计和极大似然估计的解题步骤

设X~EXP(入)E(X)=1/入^入=1/(xbar)L(入|x)=π(连乘符号)(i=1~n)入e^(-入xi)两边取对数,并使ln(L)=ll(入|x)=ln(入^n)+(-入)Σ(xi)求导l

矩估计法和极大似然估计法的一般步骤是什么?

.求极大似然函数估计值的一般步骤:(1)写出似然函数;(2)对似然函数取对数,并整理;(3)求导数;(4)解似然方程所谓矩估计法,就是利用样本矩来估计总体中相应的参数.最简单的矩估计法是用一阶样本原点

设总体X服从泊松分布 P(λ),X1,X2,…,Xn为取自X的一组简单随机样本,求λ的极大似然估计

x的平均值这个打不出来啊,大概思想是求出似然函数,就是n个泊松概率函数求积,然后取对数,就是ln(n个泊松概率函数求积),之后对λ求导,让得出来的式子等于零.再问:过程!!结果我知道

设总体X的概率密度为,求极大似然估计量

套用公式计算,经济数学团队帮你解答.请及时评价.再问:这一步是怎么的,看不懂  谢谢了再答:

求矩估计和极大似然估计

详细解答如下,点击放大:

概率论的一个题目设总体X服从(0-1)分布,X1,X2,……,Xn为X的一个样本,求p的极大似然估计.

设总体X服从(0-1)分布,P(X=1)=p,P(X=0)=1-p.似然函数L(p)=p^x1(1-p)^(1-x1)*...*p^xn(1-p)^(1-xn)=p^(x1+...+xn)*(1-p)

求Ө的极大似然估计,设总体X的概率密度为f(x

设总体X的概率密度为f(x)=Өx^(Ө-1),0

概率论题目求解矩估计量和极大似然估计量

用公式计算即可,经济数学团队帮你解答.请及时评价.

数理统计,求极大似然估计

C.若存在Xi=min(X1,X2,..,Xn).此时似然函数就是e^-(X1+X2+..+Xn-ntheta)theta取min(X1,X2,..,Xn)达最大

概率统计.求参数 的矩估计和极大似然估计 如图:详解.

矩估计法EX=∫xf(x)dx=(θ+1)/(θ+2)--->θ=(1-2EX)/(EX-1)极大似然法L(x,θ)=(θ+1)^n(x1.x2...xn)^θLn(L(x,θ))=nLn(θ+

概率论和数理统计 这几个分布的矩估计和最大似然估计的表达式啊 两点分布 二项分布

大学上概率论课,我就很纳闷:这1%的概率和99%的概率有区别吗?打一个比方:有四张彩票供三个人抽取,其中只有一张彩票有奖.第一个人去抽,他的中奖概率是25%,结果没抽到.第二个人看了,心里有些踏实了,

概率论矩估计和极大似然估计

再答:�����再问:??再答:什么情况?再问:能帮我做一下再问:新的问题再答:可以再问:发图噢再答:你发过来吧再问:再答:不好意思力学都忘了再问:……再答:你什么专业?

设X服从参数为λ的泊松分布,试求参数λ的矩估计与极大似然估计

所谓估计就是用样本的值来近似代替总体中未知参数的值,所以:既然λ的似然估计是X的均值,那它平方是的似然估计就是样本均值的平方.极大似然估计

关于概率与统计中遇到关于求矩值估计量与极大似然估计量的一般方法

额这个问题专业的说还好才学过···钜估计是指依据格里文科定理(即总体特征数可以用样本特征数来估计)利用样本的钜来估计总体的未知系数的方法例如总体密度函数为p(x;a,b)x1,x2,```xn是一个样