f(x)在x0点可导,且f(x0)>0,则f(x)在邻域单调
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:05:38
由微分中值定理f(x)-f(x0)=f'(ξ)(x-x0)ξ属于(x0,x)(x小于x0时为(x,x0))因为lim(x~x0)f'(x)=1对于ε=1/2,存在δ>0|x-x0|0所以在(x0-δ,
f(x)在x0三阶可导,因此二阶导函数f"(x)在x0的附近连续.考虑二阶导函数f"(x),其导数f'''(xo)≠0,因此在x0的附近单调;而f''(xo)=0,因此在x0的两侧二阶导函数变号.由定
[f(x0+x)-f(x0-3x)]/x=f(x0+x)/x-f(x0-3x)/x=f(x0+x)/x+3*f(x0-3x)/(-3x)=2+3*2=8主要是把方程给化简,需要仔细看书里极限的定义就很
lim(h→0)[f(x0-h/2)-f(x0)]/h=lim(h→0)[f(x0-h/2)-f(x0)]/(-h/2)*(-1/2)=f'(x0)*(-1/2)=2*(-1/2)=-1
则f(f(x0)-x0^2+x0)=f(x0)-x0^2+x0,由于f(x0)=x0,则f(2x0-x0^2)=2x0-x0^2设2x0-x0^2=t,实数t使得f(t)=t,由于有且仅有一个实数x0
m再问:怎么算再答:这个是导数的基本概念啊将2△x当做一个整体,进行还原即可
limf(x0+2h)-f(x0)/h=lim[f(x0+2h)-f(x0)/2h]*2=2limf(x0+2h)-f(x0)/2h=2f′(x0)=6
取极值的充分条件就是,f(x)在x0的某邻域上一阶可导,在x0处二阶可导,且f'(x0)=0,f"(x0)≠0因此这里一阶导数不为0,而且此邻域有二阶导数,所以x0一定不是极值点而拐点则是,某点使函数
这是导数的极限定理用拉格朗日公式可以证明令limx->x0-(x0左极限)f'(x)=k在00时即为x0点左导数故有limx->x0-(左极限)f'(x)=x0点左导数
若f(x)在x=x0处可导,表明f(x)在x=x0处是连续的(函数的连续性在极限运算中很重要),x趋近x0时,f(x)趋近f(x0)],lim{x趋近x0}f[(x)-f(x0)]等于0,答案不一定正
A.因为在x0处可导所以Δy/Δx在Δx->0时有极限.所以Δy的极限必须是0.否则Δy/Δx的极限就是无穷,不可导了.
函数x0处可导的条件是lim△x→0f(x0+△x)-f(x0)/△x存在当f(x)≥0时|f(x)|就是f(x)此时在f(x)x0处可导当f(x)
很明显f(x0)=0.因为如果f(x0)不等于0,那么此式分母为0,分子是一个不为0的数,那么极限应该是无穷大.而题中极限为4,所以式中分子即limf(x)也应该为0,这样就是一个无穷小比无穷小,极限
你的题目是在X0处有极值吧?如果是有极值,那f'(x0)=0
因为lim(h→0)h/[f(x0-2h)-f(x0)]=1/4所以lim(h→0)2h/[f(x0-2h)-f(x0)]=1/2得lim(h→0)[f(x0-2h)-f(x0)]/2h=2所以lim
lim(f(x0+7△x)-f(x0))/△x△x->0=lim7(f(x0+7△x)-f(x0))/△7△x△x->0=7f'(x0)
http://baike.baidu.com/link?url=aaw6msJKZ4dkGw072b4vWespkfzWCtHstS1TNQZvqCAbe4GdkpJ90F2fCR_ZcMtNQzy3
此题无解!首先能判断Y=F(X)是奇函数!但F与F'不同(既运算法则不同)既两函数不同,所以此题无解!
limx趋于0f(x0+3x)-f(x0-x)/3x=limx趋于0{f(x0+3x)-f(x0)]-[f(x0-x)-f(x0)]/3x}=limx趋于0{f(x0+3x)-f(x0)]/3x-[f