f(x)=∫e^x^3dx 的泰勒展开式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:43:41
ex(x是上标)
e^(-x)是f(x)的一个原函数则[e^(-x)]'=f(x)=-e^(-x)所以∫xf(x)dx=∫-xe^(-x)dx是用分部积分=∫xe^(-x)d(-x)=∫xde^(-x)=xe^(-x)
当x=0时,f(x)不连续,故f(x)的原函数分成两部分:x>0,∫f(x)dx=∫x㏑(1+x^2)dx=(1/2)∫㏑(1+x^2)d(x^2)=(1/2)ln|ln(1+x^2)|+C1x
f(x)=lnxf(e^x)=lne^x=x分步积分df(e^x)=e^x*f'(e^x)所以原式=e^x*df(e^x)的积分=e^xf(e^x)-积分f(e^x)d(e^x)=x*e^x-积分x*
定积分是常数,所以设∫[01]f(x)dx=A则f(x)=e^x+2∫[01]f(x)dx=e^x+2A两边在区间[0,1]进行定积分得∫[01]f(x)dx=∫[01](e^x+2A)dxA=∫[0
f(x)=(3e^(x/3)+c)'=e^(x/3)
令t=e^(﹣x),则:lnt=﹣x得:dt/t=﹣dx∫e^(-x)f'(e^-x)dx=∫t·f'(t)·[﹣(dt/t)]=﹣∫f'(t)dt=﹣f(t)+C
∫f'(x)dx/1+f^2(x)=∫df(x)/[1+f^2(x)]=arctanf(x)+c=arctan(e^x/x)+c
∫e^(-x)f(e^(-x))dx=-∫f(e^(-x))de^(-x)令e^(-x)=u则-∫f(e^(-x))de^(-x)=-∫f(u)du=-F(u)+C将u=e^(-x)带入得-F(e^(
分布积分法∫f(x)dx=(e^x)/xf(x)=[(e^x)/x]'=(x-1)(e^x)/x²∫xf'(x)dx=xf(x)+∫f(x)dx=(e^x)(x-1)/x+(e^x)/x=(
令F(x)=∫f(x)dx=x平方+e的2X次方+C,由Newton-Leibniz公式,F'(x)=f(x)=2x+2e^(2x)
再问:我就说是这样的,网上答案都不对。再答:呵呵,毕竟,网上人士……再问:我有好多高数题想问,不妨关注我,问了你有时间回答,我给你采纳再答:没办法看到你的提问,你可以用百度hi的,把提问链接发给我就行
=ex-1/2x^2
f(x)=e^(-x)所以f'(x)=-e^(-x)f'(lnx)=-1/x积分;[f'(lnx)]/xdx=积分;(-1/x)/xdx=积分;-1/x^2dx=1/x+C(C是常数)
题目应该有点问题,应该是:设e^(-x)是f(x)的一个原函数,转化为求∫xf(x)dx=∫xe^(-x)dx的不定积分,答案B、D有一个也弄错,答案应该是-(x+1)e^(-x)+C
若f(x)=e^x/(1+e^x)+x∫(0→1)f(x)dx求f(x)对f(x)=e^x/(1+e^x)+x∫(0→1)f(x)dx两边积分得∫(0→1)f(x)dx=∫(0→1)[e^x/(1+e
∫e^(-x)f(e^(-x))dx=-∫f(e^(-x))de^(-x)令e^(-x)=u则-∫f(e^(-x))de^(-x)=-∫f(u)du=-F(u)+C将u=e^(-x)带入得-F(e^(
∫f(x)dx=3e^(x/3)+Cf(x)=d(3e^(x/3)+C)/dx=3*d(e^(x/3))/dx=3*e^(x/3)*1/3=e^(x/3)
这里只要凑微分就可以了,不用分部积分的∫e^(-x)f[e^(-x)]dx=∫-f[e^(-x)]de^(-x)而F(x)是f(x)的原函数,所以再积分一次,得到∫e^(-x)f[e^(-x)]dx=