f(x)=∫e^x^3dx 的泰勒展开式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:43:41
f(x)=∫e^x^3dx 的泰勒展开式
当∫f(x)dx=e^x+c

ex(x是上标)

如果e^(-x)是f(x)的一个原函数,求∫x f(x) dx

e^(-x)是f(x)的一个原函数则[e^(-x)]'=f(x)=-e^(-x)所以∫xf(x)dx=∫-xe^(-x)dx是用分部积分=∫xe^(-x)d(-x)=∫xde^(-x)=xe^(-x)

设f(x)=x㏑(1+x^2),x≥0.(x^2+2x-3)e^(-x),x<0,求∫f(x)dx

当x=0时,f(x)不连续,故f(x)的原函数分成两部分:x>0,∫f(x)dx=∫x㏑(1+x^2)dx=(1/2)∫㏑(1+x^2)d(x^2)=(1/2)ln|ln(1+x^2)|+C1x

f(x)=lnx 求e^2x f'(e^x)dx 的积分

f(x)=lnxf(e^x)=lne^x=x分步积分df(e^x)=e^x*f'(e^x)所以原式=e^x*df(e^x)的积分=e^xf(e^x)-积分f(e^x)d(e^x)=x*e^x-积分x*

若f(x)=e^x+2∫(0 1)f(x)dx 求f(x)

定积分是常数,所以设∫[01]f(x)dx=A则f(x)=e^x+2∫[01]f(x)dx=e^x+2A两边在区间[0,1]进行定积分得∫[01]f(x)dx=∫[01](e^x+2A)dxA=∫[0

函数F(x)是f(x)的一个原函数,则∫e^(-x)f'(e^-x)dx=

令t=e^(﹣x),则:lnt=﹣x得:dt/t=﹣dx∫e^(-x)f'(e^-x)dx=∫t·f'(t)·[﹣(dt/t)]=﹣∫f'(t)dt=﹣f(t)+C

f(x)=e^x/x,求∫f'(x)dx/1+f^2(x)?

∫f'(x)dx/1+f^2(x)=∫df(x)/[1+f^2(x)]=arctanf(x)+c=arctan(e^x/x)+c

设∫f(x)dx=F(x)+c 那么 ∫e^(-x)f(e^(-x))dx咋做?

∫e^(-x)f(e^(-x))dx=-∫f(e^(-x))de^(-x)令e^(-x)=u则-∫f(e^(-x))de^(-x)=-∫f(u)du=-F(u)+C将u=e^(-x)带入得-F(e^(

设f(x)的一个原函数为e^x/x,则∫x*f'(x)dx=

分布积分法∫f(x)dx=(e^x)/xf(x)=[(e^x)/x]'=(x-1)(e^x)/x²∫xf'(x)dx=xf(x)+∫f(x)dx=(e^x)(x-1)/x+(e^x)/x=(

∫f(x)dx=x平方+e的2X次方+C,则f(x)= ?

令F(x)=∫f(x)dx=x平方+e的2X次方+C,由Newton-Leibniz公式,F'(x)=f(x)=2x+2e^(2x)

∫f(x)dx=x平方*e的2x次方+c,求f(x)

再问:我就说是这样的,网上答案都不对。再答:呵呵,毕竟,网上人士……再问:我有好多高数题想问,不妨关注我,问了你有时间回答,我给你采纳再答:没办法看到你的提问,你可以用百度hi的,把提问链接发给我就行

设f(x)=e^(-x),则∫[f(lnx)的导数/x]dx=?

f(x)=e^(-x)所以f'(x)=-e^(-x)f'(lnx)=-1/x积分;[f'(lnx)]/xdx=积分;(-1/x)/xdx=积分;-1/x^2dx=1/x+C(C是常数)

设e^(-x)是f(x)的一个函数,则∫xf(x)dx= A e^(-x) (1-x)+C B e^(-x) (1+x)

题目应该有点问题,应该是:设e^(-x)是f(x)的一个原函数,转化为求∫xf(x)dx=∫xe^(-x)dx的不定积分,答案B、D有一个也弄错,答案应该是-(x+1)e^(-x)+C

若f(x)=e^x/1+e^x+x∫f(x)dx 求f(x)=

若f(x)=e^x/(1+e^x)+x∫(0→1)f(x)dx求f(x)对f(x)=e^x/(1+e^x)+x∫(0→1)f(x)dx两边积分得∫(0→1)f(x)dx=∫(0→1)[e^x/(1+e

∫f(x)dx=f(x)+c 则∫e^-x f(e^-x)dx=____ 求科普

∫e^(-x)f(e^(-x))dx=-∫f(e^(-x))de^(-x)令e^(-x)=u则-∫f(e^(-x))de^(-x)=-∫f(u)du=-F(u)+C将u=e^(-x)带入得-F(e^(

∫f(x)dx=3*e^x/3+c.求f(x)

∫f(x)dx=3e^(x/3)+Cf(x)=d(3e^(x/3)+C)/dx=3*d(e^(x/3))/dx=3*e^(x/3)*1/3=e^(x/3)

设F(x)是f(x)的一个原函数,则∫e^(-x)f(e^(-x))dx=

这里只要凑微分就可以了,不用分部积分的∫e^(-x)f[e^(-x)]dx=∫-f[e^(-x)]de^(-x)而F(x)是f(x)的原函数,所以再积分一次,得到∫e^(-x)f[e^(-x)]dx=