求证bc是圆o的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:46:23
因为AD//OC所以角1=角3角2=角4又因为OD=0A所以角1=角2所以角3=角4在三角形OBC和三角形ODC中OB=OD角3=角4OC=OC所以三角形OBC和三角形ODC全等又因为OB垂直于BC所
PA切圆O于A所以角PAC=角PDA所以三角形PAC相似三角形PDA所以AC/AD=PC/PA同理三角形PBC相似三角形PDB所以BC/BD=PC/PB因为PA、PB切圆O于A、B所以PA=PB所以A
证切线有三种办法①与圆只有一个交点的直线(不太常用)②有已知交点,连半径,证垂直(根据切线判定定理)③无已知交点,作垂直,证半径(根据直线与圆的位置关系,d=r)第一题已知交点D,所以想到连半径所以只
因:三角形AOD为等腰三角形故:角OAD=角ODA(1)因:AD||OC故:角ODA=角DOC(2)角OAD=角BOC(3)由(1)(2):角OAD=角DOC(4)由(3)(4):角BOC=角DOC(
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
因为OA=OB,所以三角形AOB为等腰三角形又因为AC=BC,根据“等腰三角形底边的中点即为底边的垂足所以OC垂直于AB又因为直线AB经过圆O上的点C所以直线AB是圆O的切线
证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C
“樱之雪舞—欣”:OA⊥PA,OB⊥PB(半径⊥切线)PA=PB(圆外一点到圆的切线相等),OP=OP,∠PAO=∠PBO=90°△PAO≌△PBO∠POB=∠POA∠ACO=1/2(∠AOB=∠PO
OA=OB角A=角OBA又OA垂直OC所以角A+角OPA=90°所以角A+角CPB=90°又PC=BC所以角CPB=角CBP所以角OBA+角CBP=90°又B在圆O上所以BC为圆O的切线
证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线
设:切与G点.∵三角形OAD=OGD,OBC=OGC(各角的互补互余可推出)∴OG=OA=OB=R.
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
证明:连接OB因为OB=OA所以∠OAB=∠OBA因为BC=CD所以∠CDB=∠DCB因为∠ADO=∠CDB所以∠ADO=∠DCB因为∠ADO+∠OAB=90所以∠DCB+OBA=90所以∠OBC=9
连接AD,OD,所以OD平行于AC,所以角ADO=角CAD,又因为,角CAD+角ADE=90度,所以角ADE+角ADO=角EDO=90度,所以OD垂直于ED,所以:DE是圆o的切线
连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB
证明:连接OA,OB,AB∵PA,PB是⊙O的切线∴∠OAP=∠OBP=90°∵OA=OB,OP=OP∴△OAP≌△OBP∴PA=PB,∠APO=∠BPO∴AB⊥PO∵BC是直径∴∠BAC=90°即A
证明:作DE平行于BC,交AC于E点,连接OE、AO、OD∵D为圆O切点,∴OD⊥AB∵△ABC为等腰三角形,DE‖BC∴AD=AE又∵O为BC中点,∴∠DAO=∠OAE∵AD=AE,AO=AO,∠D
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
延长AO交园边于点K,连接KC并延长交AP于E∵∠B=∠K(两角都是弦AC的圆周角相等)∵∠PDA=∠PAD ( PA=PD已知,等边对等角)且∠CAD=∠DAB (AD