求证 四边形APEH是菱形 如图 连接AC在不添加其他
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:02:15
证明:∵AE平分∠BAD,BF平分∠ABC∴∠DAE=∠BAE,∠ABF=∠CBF∵平行四边形ABCD∴AD∥BC∴∠BEA=∠DAE,∠AFB=∠CBF∴∠BAE=∠BEA,∠AFB=∠ABF∴BE
连结AC,由E、F为中点可EF为中位线,则EF=1/2AC,同理GH=1/2AC,FG=1/2BD,EH=1/2BD;由矩形ABCD可知对角线相等,即AC=BD,从而得到EF=GH=FG=EH,所以四
角线互相垂直且一条对角线平分一组对角的四边形是菱形不是真命题.四边形ABCD,AB=AD,CB=CD,AB不等于CD,也满足上条件.
(1)因为宽相等,运用面积法得AB=CD有因为AB平行等于CD.所以得平行四边形ABCD因为两张纸片相等.再次运用面积法.又得AB=AD所以证得◇ABCD(2)最小是4最大是17
知:菱形ABCDABBCCDDA的中点分别为EFGH因为EH//BD且等于1/2BD又FG//BD且等于1/2BD(根据三角形中线原理)所以EH=BD所以EFGH为平行四边形又因为AC垂直BD所以EF
连接两条对角线根据中位线,可得四边形为平行四边形两条对角线相等,根据中位线也可得到四边相等所以得到菱形
证明:∵对角线BD平分∠ABC,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠3=∠1,∴∠3=∠2,∴DC=BC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.
证明:∵在平行四边形ABCD中,AB∥CD,∴∠DCA=∠BAC,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形.
解题思路:圆周角的性质定理是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/incl
证明:∵AB=CD,AB//CD∴四边形ABCD是平行四边形∵CB=CD∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)
在菱形ABCD中OA=OB=OC=OD又DE//AC,CE//BD∴DE//OCCE//OD∴四边形OCED为平行四边形又OC=OD∴四边形OCED为菱形(一组邻边相等的平行四边形是菱形)
证明:因:AB=BC=CD=AD则:AB=CD,BC=AD所以四边形ABCD中是平行四边形又因:AB=BC所以平行四边形ABCD中是菱形\x0d
四边形ABCD的内角为1+2+1+2=6360度/6=60度四个内角分别为;角A为60度,角B为120度,角C为60度,角D为120度.因为角A加角B等于180度所以AD平行BC(同旁内角互补,两直线
已知:如图,E、F、G、H分别为矩形ABCD四边的中点.求证:四边形EFGH为菱形.证明:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=12BD,同理FG=12BD,HG=12AC,E
(1)因为在平行四边形ABCD中,O点位AD的中点 且AD与BC垂直 所以,线段AB
因为平等四边形的对角线相互平分,现又因为对角线互相垂直,可由勾股定理得各边的边长相等.即此平行四边形是四条边相等的四边形,也就是菱形.
1连接两条对角线!由于这个四边形首先是平行四边形!故对角线相互平分!又由于两条对角线互相垂直!所以由两条对角线分成的四个直角三角形全等!于是该平行四边形四条边相等!所以命题得证!2由于四条边相等!用向
已知:矩形ABCD,E、F、G、H分别是AB、BC、CD、AD中点.求证:四边形EFGH是菱形.证明:∵E是AB中点 F是BC中点∴EF‖AC EF=1/2
连接BD交AC于点OAC⊥BDAO=COBO=DO∵AE=CF∴EO=FO所以BEDFO组成的五个直角三角形全等∴BE=ED=DF=FB∴DEBF是菱形
向量AC.向量BD=(AB+AD).(BA+BC)=(AB+AD).(BA+AD)=(AD+AB).(AD-AB)=AD²-AB²=0所以AC垂直于BD