求级数(-1)的n次方的和函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:17:03
求级数(-1)的n次方的和函数
求级数的敛散性.lim(n趋近于无穷)1+n分之1和的n次方分之一.求这个级数的敛散性.

1+n分之1和的n次方的极限是e,所以级数的通项的极限非零,级数发散再问:1+n分之1和的n次方的极限是e就是问这个是怎么来的。再答:重要极限呐

求级数∑(2n-1)x^(n-1)的收敛区间及和函数

收敛半径是单位圆,如果需要过程再联系我再问:给个过程阿再答:

函数项级数 求幂级数的和函数 1+x^2+x^4+...+x^n+...

就是公比为x^2的等比数列的求和因此和函数=1/(1-x^2),收敛区间为(-1,1)

急.求级数[∞∑n=1] nx^(2n)的和函数S(x),并求[∞∑n=1] n/2^n

可用求积求导法求和,如图.经济数学团队帮你解答.请及时评价.再问:求大神加我帮我舍友解题现在她们在考试拜托啦597651048~再答:请采纳。本人不用qq,只在知道答题。

已知级数n从1到无穷,∑n(n+1)xn的和函数 怎么求

提示:S=∑n(n+1)x^n∑n(n+1)x^n积分=∑nx^(n+1)=x^2∑nx^(n-1)∑nx^(n-1)积分=∑x^n=1/(1-x)倒回去,需要求导2次

求级数∑1/[n(2n-1)]*x^2n在其收敛区间内的和函数

再答:这道题我做了很长时间

求级数∑(n+1)(n+2)x^n的收敛区间,并求和函数

令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1

已知级数n从1到无穷,∑Xn的和函数怎么求?

级数都是n从1到无穷,∑Xn的和函数怎么求要根据通项Xn的具体形式.没有统一的求法.

-1的n次方,的级数收敛吗,求证明

∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能

怎样利用逐项求导或逐项积分求级数的和函数 ∑(0~无穷)n*x^(n-1)

S(x)=∑(0~无穷)n*x^(n-1)∫S(x)dx=∫∑(0~无穷)n*x^(n-1)dx=∑(0~无穷)∫n*x^(n-1)dx=∑(0~无穷)x^n等比求和=1/(1-x)S(x)=(1/(

求级数 X²/(1+X²)^n的和函数(n=0、1、2……)

这就是等比级数,首项是x^2,公比为1/(1+x^2),当x不等于0时,和函数为x^2/(1-1/(1+x^2))=1+x^2.当x=0时,和函数的值为0.再问:等比级数求和的公式是不是,若首项为a、

求这个级数的和函数 求和符号 x^(2n-1)/(2n-1)

最后结果应该是1/2ln(1+x)/(1-x),其中-1<x<1这道题是大学数学分析学的,用逐项求导再求积分求解的,输入太麻烦,直接写结果了.

求级数(-1)^(n-1)/n^2的和

如果可以使用结论∑{1≤n}1/n^2=π^2/6,那么求这个和不难:∑{1≤n}(-1)^(n-1)/n^2=∑{1≤k}1/(2k-1)^2-∑{1≤k}1/(2k)^2(对n分奇偶,n=2k-1

求级数∑(2n+1)x^n在其收敛区间内的和函数

∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(

求级数∑n=0 ∞ x^(n+1)/(n+1)的收敛并求其和函数.

经济数学团队为你解答,有不清楚请追问.请及时评价.

求 (n+1)x^2n 的和函数 ,并求 级数 (n+1)/2^(n+1) 的和

利用利用逐项积分可记    S(x)=Σ(n=1~inf)[(n+1)x^n],积分,得    ∫[0,x]S(t)dt=Σ(n=1~inf)∫[0,x][(n+1)t^n]dt =Σ(n=1~inf

求级数(4n^2+4n+2)x^2n/(2n+1)的收敛域与和函数

分成2个级数:(4n^2+4n+2)x^2n/(2n+1)=(2n+1)x^2n+x^2n/(2n+1)级数(2n+1)x^2n的收敛域(-1,1)级数x^2n/(2n+1)的也是收敛域(-1,1)故

求级数(-1)^n/(2n+1)的和

(-1)^n/(2n+1)=(-1)^n*(1)^(2n+1)/(2n+1)令S(x)=∑(-1)^n*x^(2n+1)/(2n+1)S'(x)=(∑(-1)^n*x^(2n+1)/(2n+1))'=