Sm=p,Sp=m则Sm p=-(m p)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:12:59
Sm=a1m+m(m-1)d/2=nSn=a1n+n(n-1)d/2=m相减a1m+m(m-1)d/2-[a1n+n(n-1)d/2]=n-ma1(m-n)+(m+n-1)(m-n)d/2=n-m两边
Sn=[(a1+a1+(n-1)d]*n/2=[2a1+(n-1)d)]*n/2Sm/m={[2a1+(m-1)d)]*m/2}/m=a1+(m-1)d/2Sn/n=a1+(n-1)d/2Sp/p=a
Sm=a1m+m(m-1)d/2=n(1)Sn=a1n+n(n-1)d/2=m(2)(1)-(2)a1(m-n)+(m+n-1)(m-n)d/2=n-ma1+(m+n-1)d/2=-1a1=-1-(m
Sm+p=a1+a2+…+am+am+1+…+am+p=Sm+(a1+md)+(a2+md)+…+(ap+md)=Sm+Sp+mpd=m+p+mpd=m+p+2mp(m/p-p/m)/(p-m)d/2
运用简单的等差数列的性质和均值不等式即可证到!显然:当m不等于n时Sn=n/m,Sm=m/n;两式相减,可得公差:d=2/mn;Sm+n=Sm+Sn+mnd=m/n+n/m+2>4;Sm+n>4当m=
只就m不等于时计算Sm=ma1+(1/2)m(m-1)d=n(1)Sn=na1+(1/2)n(n-1)d(2)n*(1)-M*(2):(1/2)mn(m-n)d=n^2-m^2=(n-m)(n+m)m
am=sm-sm-1=2同理am+1=3公差q=1sm=0递推得到am-1=1am-2=0am-3=-1am-4=-2易知此为第一项,所以m=5用求和公式列出来结果也是一样,项数不多可以直接写
等差数列中,若Sm=Sn,m≠n,则S(m+n)=0证明:设等差数列{an}的首项为a1,公差为dS(n)=na1+n(n-1)d/2所以ma1+m(m-1)d/2=na1+n(n-1)d/2故(m-
Sm=Snma1+m(m-1)d/2=na1+n(n-1)d/2(m-n)a1+(m²-m-n²+n)d/2=0(m-n)a1+[(m+n)(m-n)-(m-n)]d/2=0a1(
(1)在等差数列{an}中,若m+n=p+q<==>am+an=ap+aq(2)等差数列{an}中,d/2=(Sn/n-Sm/m)/(n-m)(3)数列{an}是等差数列<==>Sk=Ak+Bk(4)
证明:因为在等差数列中m+n=p+q,所以am+an=ap+aq,所以m*am+n*an=p*ap+q*aq,m*(a1+am)+n*(a1+am)=p*(a1+ap)+q(a1+aq),所以m*(a
S(x)=x(x+1)/2p=n(n+1)/m(m+1)n^2+n=pm(m+1)(2n+1)^2=p(2m+1)^2-p+1设u=2n+1v=2m+1那么u^2-pv^2=1-p显然这个方程存在解u
等差数列中na1+n(n-1)d/2=-dn²/2+(a1+d/2)n,∴可设Sn=An²+Bn.1.(Sp-Sq)/(p-q)=(Ap²+Bp-Aq²-Bq)
am=Sm-Sm-1=2,am+1=Sm+1-Sm=3,所以公差d=am+1-am=1,Sm=m(a1+am)2=0,得a1=-2,所以am=-2+(m-1)•1=2,解得m=5,故选C.
证明:由数列为等差数列,可设其前n项和Sn=An^2+BnSm=Am^2+Bm=p,(1)Sp=Ap^2+Bp=m(2)(1)+(2)得A(m^2+p^2)+B(m+p)=m+pp*(1)-m*(2)
证:设公差为dSm=Spma1+m(m-1)d/2=pa1+p(p-1)d/2(m-p)a1+[m(m-1)-p(p-1)]d/2=0(m-p)a1+[(m²-p²)-(m-p)]
a(n)=a+(n-1)d.s(n)=na+n(n-1)d/2.p=s(m)=ma+m(m-1)d/2.p^2=mpa+mp(m-1)d/2.m=s(p)=pa+p(p-1)d/2.m^2=mpa+m
由Sn=na1+n(n-1)d/2=dn^2+(a1-d/2)n,1.当d不等于0时函数为一元二次方程,且恒过定点(0,0),2.当d=0时函数Sn=n*a1.显然对2来说,是一条直线不可能满足Sm=
SM,西方称之为sadomasochism(简称sm),统指与施虐、受虐相关的意识与行为.在中国,SM有一个更为温暖的称呼:虐恋.虐恋一词英文为Sadomasochism,是施虐倾向(Sadism)和
等于P.因为sm=sp,但是m不等于p,所以s=0.sm+p=p