Sm=p,Sp=m则Sm p=-(m p)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:12:59
Sm=p,Sp=m则Sm p=-(m p)
等差数列若Sm=n,Sn=m,则Sm+n=-(m+n)为什么

Sm=a1m+m(m-1)d/2=nSn=a1n+n(n-1)d/2=m相减a1m+m(m-1)d/2-[a1n+n(n-1)d/2]=n-ma1(m-n)+(m+n-1)(m-n)d/2=n-m两边

设Sn是等差数列{an}的前n项和,求证:若正整数m,n,p成等差数列,则Sm/m,Sn/n,Sp/p也成等差数列.

Sn=[(a1+a1+(n-1)d]*n/2=[2a1+(n-1)d)]*n/2Sm/m={[2a1+(m-1)d)]*m/2}/m=a1+(m-1)d/2Sn/n=a1+(n-1)d/2Sp/p=a

等差数列,若Sm=n,Sn=m,则Sm+n=( )

Sm=a1m+m(m-1)d/2=n(1)Sn=a1n+n(n-1)d/2=m(2)(1)-(2)a1(m-n)+(m+n-1)(m-n)d/2=n-ma1+(m+n-1)d/2=-1a1=-1-(m

数列证明题①等差数列{an},Sm=p,Sp=m(m≠p),求证Sm+p=-(m+p)②Sm=Sp(m≠p),Sm+p=

Sm+p=a1+a2+…+am+am+1+…+am+p=Sm+(a1+md)+(a2+md)+…+(ap+md)=Sm+Sp+mpd=m+p+mpd=m+p+2mp(m/p-p/m)/(p-m)d/2

在等差数列中,sn=n\m sm=m\n,则sm+n与4的大小

运用简单的等差数列的性质和均值不等式即可证到!显然:当m不等于n时Sn=n/m,Sm=m/n;两式相减,可得公差:d=2/mn;Sm+n=Sm+Sn+mnd=m/n+n/m+2>4;Sm+n>4当m=

Sm=n,Sn=m,Sm+n=?

只就m不等于时计算Sm=ma1+(1/2)m(m-1)d=n(1)Sn=na1+(1/2)n(n-1)d(2)n*(1)-M*(2):(1/2)mn(m-n)d=n^2-m^2=(n-m)(n+m)m

设等差数列{an}的前n项和为sn,若sm-1=-2,sm=0,sm+1=3,则m=

am=sm-sm-1=2同理am+1=3公差q=1sm=0递推得到am-1=1am-2=0am-3=-1am-4=-2易知此为第一项,所以m=5用求和公式列出来结果也是一样,项数不多可以直接写

等差数列{an}中,若Sm=Sp.求证Sm+p=0

等差数列中,若Sm=Sn,m≠n,则S(m+n)=0证明:设等差数列{an}的首项为a1,公差为dS(n)=na1+n(n-1)d/2所以ma1+m(m-1)d/2=na1+n(n-1)d/2故(m-

在等差数列{an}中,设前m项和为Sm,前n项和为Sn,且Sm=Sn,m不等于n,则Sm+n=?

Sm=Snma1+m(m-1)d/2=na1+n(n-1)d/2(m-n)a1+(m²-m-n²+n)d/2=0(m-n)a1+[(m+n)(m-n)-(m-n)]d/2=0a1(

等差数列{an},其中Sm=p ,Sp=m(m≠n),那么Sm+p=_____(注意m+p为S的下标) 本人需要详细的证

(1)在等差数列{an}中,若m+n=p+q<==>am+an=ap+aq(2)等差数列{an}中,d/2=(Sn/n-Sm/m)/(n-m)(3)数列{an}是等差数列<==>Sk=Ak+Bk(4)

在一个等差数列中,若M+N=P+Q,如何证出 Sm+Sn=Sp+Sq.

证明:因为在等差数列中m+n=p+q,所以am+an=ap+aq,所以m*am+n*an=p*ap+q*aq,m*(a1+am)+n*(a1+am)=p*(a1+ap)+q(a1+aq),所以m*(a

求助:证明对任意素数p,存在正整数前n项和Sn及前m项和Sm(n,m为正整数),p=Sn/Sm

S(x)=x(x+1)/2p=n(n+1)/m(m+1)n^2+n=pm(m+1)(2n+1)^2=p(2m+1)^2-p+1设u=2n+1v=2m+1那么u^2-pv^2=1-p显然这个方程存在解u

证明在等差数列中,1.(Sp-Sq)/(p-q)=(Sp+Sq)/(p+q) 2.若Sm=Sn,则S(m+n)=0

等差数列中na1+n(n-1)d/2=-dn²/2+(a1+d/2)n,∴可设Sn=An²+Bn.1.(Sp-Sq)/(p-q)=(Ap²+Bp-Aq²-Bq)

设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=(  )

am=Sm-Sm-1=2,am+1=Sm+1-Sm=3,所以公差d=am+1-am=1,Sm=m(a1+am)2=0,得a1=-2,所以am=-2+(m-1)•1=2,解得m=5,故选C.

在等差数列{a}中前n项和为Sn,若Sm=p,Sp=m则Sm+p=-(m+P)如何证明

证明:由数列为等差数列,可设其前n项和Sn=An^2+BnSm=Am^2+Bm=p,(1)Sp=Ap^2+Bp=m(2)(1)+(2)得A(m^2+p^2)+B(m+p)=m+pp*(1)-m*(2)

在等差数列{a}中前n项和为Sn,若Sm=Sp(m不等于p)则Sm+n=0如何证明

证:设公差为dSm=Spma1+m(m-1)d/2=pa1+p(p-1)d/2(m-p)a1+[m(m-1)-p(p-1)]d/2=0(m-p)a1+[(m²-p²)-(m-p)]

在等差数列中,试证明Sm=p,Sp=m,Sm+P=_(m+p)

a(n)=a+(n-1)d.s(n)=na+n(n-1)d/2.p=s(m)=ma+m(m-1)d/2.p^2=mpa+mp(m-1)d/2.m=s(p)=pa+p(p-1)d/2.m^2=mpa+m

等差数列AN中,前N项和SN,且满足SM=SP(M不等于P)求SN中哪一项最大

由Sn=na1+n(n-1)d/2=dn^2+(a1-d/2)n,1.当d不等于0时函数为一元二次方程,且恒过定点(0,0),2.当d=0时函数Sn=n*a1.显然对2来说,是一条直线不可能满足Sm=

SM=

SM,西方称之为sadomasochism(简称sm),统指与施虐、受虐相关的意识与行为.在中国,SM有一个更为温暖的称呼:虐恋.虐恋一词英文为Sadomasochism,是施虐倾向(Sadism)和

Sm=Sp (m不等于p) Sm+p=

等于P.因为sm=sp,但是m不等于p,所以s=0.sm+p=p