求级数(-1)的n-1次方 1 lnn 的敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:45:56
根据莱布尼兹判敛法,an+1<an,liman=0可以判定收敛.根据其正项级数sinx/n通项等价于x/n(可以用比较法的极限形式),所以正项级数发散,所以原级数是条件收敛.再问:这道题这样答好像不对
发散再问:过程...再答:你能把分子分母表示清楚吗?用一下括号再答:因为n~无穷大,(n-1)/(n+3)≠0再问:再问:要求从比较判别法达朗贝尔柯西三种方法中选择来求出...再答:再问:再问:等于1
1+n分之1和的n次方的极限是e,所以级数的通项的极限非零,级数发散再问:1+n分之1和的n次方的极限是e就是问这个是怎么来的。再答:重要极限呐
条件收敛,这是交错级数.
发散啊,不满足级数收敛的必要条件.
先判断是否绝对收敛,如下:
∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能
收敛.1到n的平方和是1/6*(n+1)*(2n+1),用整个数列的后一项比上前一项,得到1/3,因为绝对值小于1,所以收敛
如果可以使用结论∑{1≤n}1/n^2=π^2/6,那么求这个和不难:∑{1≤n}(-1)^(n-1)/n^2=∑{1≤k}1/(2k-1)^2-∑{1≤k}1/(2k)^2(对n分奇偶,n=2k-1
再问:再问:这个呢,结果为一再答:通项极限1,所以发散再问:什么意思?再答:通项极限=0是收敛的必要条件,现在通项的极限=1,所以必然发散再答:不需要用其他判敛法再答:再问:ok再答:判敛第一步,初步
运用等价无穷小x→0,1-cosx~1/2x^2因此,级数∑1-cos∏/n与级数∑1/2(pi^2/n^2)敛散性相同显然,级数∑1/2(pi^2/n^2)收敛(p级数p=2收敛)有比较法知原级数收
记通项为an,则lima(n+1)/an=e/a,因此a>e级数收敛,a
∵分母的极限lim(n→∞)[(1+1/n)^n]^2=e^2是有限数而分子是无穷大量∴级数的一般项不趋于0,故级数发散
发散,当n→∞时,1/(1+1/n)^n→1/e,不满足级数收敛的必要条件(通项趋于0),故级数发散
a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)
原式=(1/2)^n=0
(-1)^n/(2n+1)=(-1)^n*(1)^(2n+1)/(2n+1)令S(x)=∑(-1)^n*x^(2n+1)/(2n+1)S'(x)=(∑(-1)^n*x^(2n+1)/(2n+1))'=