求积分∫cotz^3dz(∣z∣=3)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:13:23
f(z)=(3z+5)/(z^2+2z+4)是区域D={z/z的模小于等于1}上的解析函数,且D的边界C是光滑闭曲线.根据Cauchy积分定理,可知这个复积分为0.
全微分公式dz=(偏z/偏x)dx+(偏z/偏y)dy求偏导时发现是复合函数求导=[e^(y/x)*偏(y/x)/偏x]dx+[e^(y/x)*偏(y/x)/偏y]dy=[e^(y/x)*(-y/x^
直接利用Cauchy积分公式即可再问:。。。大神再答:
由于被积函数在复平面解析,所以积分结果与路径无关,从而可忽略掉积分路径,当成实积分来进行计算
z²+2z+4=0的根为:[-2±√(4-16)]/2=-1±i√3这两个点均不在单位圆内,因此被积函数在单位圆内解析,所以本题积分结果为0希望可以帮到你,如果解决了问题,请点下面的"选为满
题目有点问题,x²+y²=1与x+y=1围成的区域不是封闭区域.题中也没有规限z的范围再问:是xz=1打错了再答:
设z=cosθ+isinθ,|dz|=|d(cosθ+isinθ)|=|-sinθ+icosθ|dθ=dθ∫|z-1||dz|=∫[0→2π]|cosθ+isinθ-1|dθ=∫[0→2π]√[(co
柯西积分公式原式=2πie^z|z=0=2πi希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
是2πi.用柯西积分公式f(z0)=1/2πi∮f(z)/(z-z0)dz.可以令f(z)=z,则z0=1,所以此积分为2πi.
根据复周线柯西积分定理这题L2和L1(顺时针对应负方向)恰好构成一条复周线,所以积分值为0.
令u=x^2+y^3dz/dx=dz/duXdu/dx=e^uX2x=2xe^(x^2+y^3)dz/dy=dz/duXdu/dy=e^uX3y=3ye^(x^2+y^3)考查公式(e^x)'=e^x
由已知得dy/dx=(e^y+z)/(e^x+z),dz/dx=(z^2-e^(x+y))/(e^x+z),dz/dy=(z^2-e^(x+y))/(e^y+z),所以可以得到三式,e^ydx+zdx
先做紧急的.两边取对数:ZlnX=YlnZ对X求导:Z'xlnx+Z/x=Y/ZZ'xZ'x=Z/(XY/Z-xlnx)对Y求导:Z'ylnx=lnZ+Y/ZZ'yZ'y=lnZ/(lnx-Y/Z)所
在C内(|z|=2),z=0是f(z)=[ln(1+z)]/z的孤立奇点,但z=-1不是f(z)的孤立奇点,ln(1+z)在z=-1以及小于-1的负实轴上不解析,所以f(z)在z=-1以及小于-1的负
是(arctany)/x还是arctan(y/x)?如果是z=(arctany)/x,则∂z/∂x=-(arctany)/x²∂z/∂y=1/
首先,根据0<x<2 , 0<y<√2x-x² 0<
这个很简单啊,和实数的积分是完全类似的.∫[0→i]e^-zdz=-e^(-z)[0→i]=1-e^(-i)=1-cos1+isin1
收敛域0<|z|<+∞由于展开式再收敛羽内一致收敛,积分和求和可交换在进一步利用重要积分注意到展开式没有-1次幂项,所以每项积分值为0所以总的积分值为0
z=(2y+7)^2*ln(x^3+2)dz/dx=3x^2*(2y+7)^2/(x^3+2)dz/dy=2*(2y+7)*ln(x^3+2)