求由方程2sin(x 2y-3z)=x 2y-3z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:04:35
x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y
设F(x,y,z)=sinz-xyz则F′(X)=-yzF′(y)=-xzF′(z)=cosz-xyz对x的谝导数等于-yz/(cosz-xy)z对y的谝导数等于-xz/(cosz-xy)dz=[-y
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
再答:隐函数高阶求导。再答:
(y^2+2xy-cos(y+z))/(e^z+cos(y+z))再问:没有过程吗?再答:求导:e^z*dz-y^2-2xy+cos(y+z)(1+dz)=0把含有dz的项移到一起:(e^z+cos(
对x求导2cos(x+2y-3z)乘以(1-3Fx)=1+3Fx对y求导2cos(x+2y-3z)乘以(2-3Fy)=2+3Fy整理可得,再问:juti具体点吧咯咯咯再答:隐函数求导,Fx就是Z对x求
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
化简得:9-12Y^2+6Y+4+12Y^2+4Y-10-10Y+X-Y+1=X-Y+4带入X、Y值得:=3
先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-
两边对x求偏导:2xz^3+x^2*3z^2Z'x+2y^2*2z*Z'x-2x=0,得:Z'x=(2x-2xz^3)/(3x^2z^2+4y^2z)两边对y求偏导:x^2*3z^2*Z'y+4yz^
答案:2x^2y+2xy^2原式=4x2y-{x2y-[3xy2-2x2y+4xy2+x2y]}-5xy2=4x2y-{x2y-[7xy2-x2y]}-5xy2=4x2y-{x2y-7xy+x2y]}
(x2+z2)(x2+y2)(y2+z2)=(x+y)2-2xy×(x+z)2-2xz×(y+z)2-2yz--之后不清楚了
y^3z^2-x^2+xyz-5=0等式两边同时对x求导:∂z/∂x=(2x-yz)/(2zy^3+xy)等式两边同时对y求导:∂z/∂y=-(3y
公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.
代入x=-1,y=1,2x^y-(5xy^-3x^y)-x^=2*(-1)^*1-{5*(-1)*1^-3*(-1)^*1}-(-1)^=2-(-5-3)-1=9备注:2^表示2的平方
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x
两边求微分的2xdx+2zdz=2e^zdy+2ye^zdz解得dz=(2e^zdy-2xdx)/(2z-2ye^z)=(e^zdy-xdx)/(z-ye^z)