求曲面y-e2x-2=0在点(1,1,2)的切平面与法线方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:09:18
求曲面y-e2x-2=0在点(1,1,2)的切平面与法线方程
求教一道高数题 求曲面z=x^2+y^2+3在点M(1,-1,5)处的切平面与曲面z=x^2+y^2+2x-2y所围成的

曲面z=x^2+y^2+3在点M处的法向量n=(2x,2y,-1)|M=(2,-2,-1)写出切平面的方程2(x-1)-2(y+1)-(z-5)=0整理为2x-2y-z+1=0可以写成z=2x-2y+

求曲面e^x-z+xy=3在点(2,1,0)处的切平面及法线方程.

∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1

求原点到曲面在z^2=xy+x-y+4的最短距离

很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!

在曲面z=xy上求一点,使该点处的法线垂直于平面x+3y+z+9=0

设F(x,y,z)=xy-z那么它的法向量为n=(Fx,Fy,Fz)=(y,x,-1)(Fx,Fy,Fz为分别对F(x,y,z)的x,y,z求偏导数)又平面x+3y+z+9=0的法向量设为n'=(k,

在曲面z=xy上求一点,使该点处曲面的法线垂直于平面x+3y+z+9=0

http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-

设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____

由题设,将e2x+y-cos(xy)=e-1两边对x求导,得e2x+y•[2+y′]+sin(xy)•[y+xy']=0将x=0代入原方程得y=1,再将x=0,y=1代入上式,得y'|x=0=-2.因

求曲面xy-z^2+1=0上离原点最近的点

xy-z^2+1=0=>z^2=xy+1x^2+y^2+z^2=x^2+y^2+xy+1=(x+y/2)^2+3y^2/4+1>=1当且仅当x=y=0,z=正负1的时候成立,因此,离原点最近的点是(0

求曲面 在点(2,1,0)处的切平面方程和法线方程

设曲面议程为F(X,Y,Z)其对XYZ的偏导分别为(X,Y,Z),F2(X,Y,Z),F3(X,Y,Z)将点(2,1,0)代入得[F1,F2,F3](法向量)切平面方程F1*(X-2)+F2*(Y-1

曲面z=y+xy-2在点(1,1,0)处的法向量为?

u=y+xy-2-zau/ax=yau/ay=1+xau/az=-1n=(y,1+x,1)=(1,2,-1)

某曲线在任一点的切线的斜率等于1+2e2x,且过点(0,3),求切线方程

曲线在任一点的切线的斜率等于1+2e2x,说明曲线方程为y=e^2x+x+c(c是一个常数)代入点(0,3),解得c=2因此y=e^2x+x+2

求曲面xyz=1和曲面x=y^2交线在点(1,1,1)处的切线和法平面方程

交线y=tx=t^2z=t^(-3)x'(t0)=2,y'(t0)=1,z'(t0)=-3切线方程为(x-1)/2=(y-1)/1=(z-1)/(-3)法平面方程(x-1)*2+(y-1)*1+(z-

求曲面x^2+2y^2+3z^2=21过点(1,2,3)的法线方程?

分别求偏导数,(2x,4y,6z)代入(1,2,3)就得法线方向(2,8,18),即(1,4,9)法线可以写成x-1=(y-2)/4=(z-3)/9

求 曲面Z=4-X^2-Y^2在点P(1,1,2)处的切平面方程和法线方程

方程整理成为F(x,y,z)=x²+y²+z-4=0,切向量=(Fx,Fy,Fz)=(2x,2y,1)=(2,2,1),则法线(x-1)/2=(y-1)/2=(z-2)/1,切平面

1、曲面X^2+2Y^2+3Z=21在点(1,-2,2)的法线方程?2、点(1,1,1)到平面X-Y+Z+2=0的距离?

1.X^2+2Y^2+3Z=21在某点处的法线向量(2x,4y,3)所以在(1,-2,2)处的发现向量=(2,-8,3)所以发现方程:(x-1)/2=(y+2)/-8=(z-2)/32.直接套公式d=

求在空间中,方程x^2+y^2-2y=0表示的曲面

x^2+y^2-2y+1=1x^2+(y-1)^2=1平面里表示圆心在(0.1),半径为1的圆空间中,由于Z坐标没限制,所以表示以这个圆为截面的圆柱形的侧面

曲面sinz-z+xy=1在点(2,-1,0)出的法线方程

令F(x,y,z)=sinz-z+xy-1则偏导数:Fx=yFy=xFz=cosz-1所以曲面sinz-z+xy=1在(2,-1,0)的法向量是:(-1,2,0)

高数!求曲面Z=X平方+Y平方在点(1,1,2)处的切平面方程

由Z=X平方+Y平方得:F(X,Y,Z)=Z-X平方-Y平方F(X,Y,Z)分别对X,Y,Z求偏导得到:法向量n=(-2X,-2Y,1)带入点(1,1,2)得:n=(-2,-2,1)所以:-2(X-1

求曲面x²-y²-z²=0在点(2.0.2)处的切平面和法线方程

令f(x,y,z)=x²-y²-z²那么f'x=2xf'y=-2yf'z=-2z所以在(2.0.2)点处的法向量为(4,0,-4)所以切平面方程为:4(x-2)-4(z-