求曲面x2-xy-8x z 5=0在点(2,-3,1)处的切平面方程与法线方程.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 23:44:47
答案是1相当于有一个球面:x^2+y^2+z^2=R^2;与z∧2-xy=1相切,求最小的R消去z,得R^2=x^2+y^2+xy+1;相当于求g=x^2+y^2+xy+1的最小值,连续可导,求偏导得
3x2-2xy-8y2=(3x+4y)(x-2y)=0so3x+4y=0orx-2y=0x/y=-4/3or2
∵x2+y2-6x-8y+25=0,∴(x-3)2+(y-4)2=0,∴x=3,y=4,当x=3,y=4时,原式=43-34=712.
x2-xy=-3①,2xy-y2=-8②,①×2+②×3得:2x2-2xy+6xy-3y2=-6-24=-30,则2x2+4xy-3y2=-30.
可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就
因为上式是一个空间曲面,要求原点到曲面最短距离,可以想象成有个球体与这个曲面相切,球的半径r就是最短距离所以设x^2+y^2+z^2=r^2球与曲面相交即x^2+y^2+xy+x-y+4=r^2进行配
z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-
∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1
很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!
http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-
X2+Y2+8X+6Y+25=0x²+8x+16+y²+6y+9=0(x+4)²+(y+3)²=0∴x+4=0y+3=0x=-4y=-3X2+4XY+4Y2分之
X2+Y2+8X+6Y+25=0x^2+y^2+8x+6y+25=0x^2+8x+16+y^2+6y+9=0(X+4)^2+(y+3)^2=0x=-4y=-3(x^2-4y^2)/(x^2+4xy+4
xy-z^2+1=0=>z^2=xy+1x^2+y^2+z^2=x^2+y^2+xy+1=(x+y/2)^2+3y^2/4+1>=1当且仅当x=y=0,z=正负1的时候成立,因此,离原点最近的点是(0
是求x2/y2+y2/x2=吗x2-y2=xy则x/y-y/x=1两边平方得x^2/y^2-2+y^2/x^2=1所以x^2/y^2+y^2/x^2=3
10拆成1+9X2-2X+1+Y2-6Y+9=0(X-1)2+(Y-3)2=0平方大于等于0,相加等于0,若有一个大于0,则另一个小于0,不成立.所以两个都等于0所以X-1=0,Y-3=0X=1,Y=
求曲面(e^z)-z+xy=4的切平面及法线方程.设曲面方程F(x,y,z)=(e^z)-z+xy-4=0;点M(xo,yo,zo)是该曲面上的任意一点.∂F/∂x=y;
x²-2x+y²+6y+10=0,变换得(x-1)²+(y+3)²=0,∴x=1,y=-3∴(x2-2xy)/(xy+y2)=(1²-2*(-3))/
∵2x2+xy-3y2=0(y≠0),即(2x+3y)(x-y)=0,∴2x+3y=0,x-y=0,解得:x=-32y,x=y,当x=-32y时,xy=-32;当x=y时,xy=1.
记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17
∵4x2+8xy+9y2=4x2+2xy+9y2+6xy=2(2x2+xy)+3(3y2+2xy),2x2+xy=6,3y2+2xy=9,∴2(2x2+xy)+3(3y2+2xy)=2×6+3×9=3