求数列极限(n趋于无穷时)2的n次方除以n的n次方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:39:35
求数列极限(n趋于无穷时)2的n次方除以n的n次方
夹逼定理求,当n趋于无穷时,n次根号下(1+a^n)的极限

|a|1时,极限为a,此时可以把1忽略不计,科学点说可以把根号下提个a出来a=

证明(2n+1)!/(2n)!当n趋于无穷时的极限为0

记A=(2n+1)!/(2n)!=(1/2)*(3/4)*...*(2n+1)/2n则00(n趋于无穷时).

证明n趋于无穷时,2的n次方/n!的极限是0.

n!=n*(n-1).1=(n/2*.*1/2)*2^n,n趋于无穷大是2^n/n!=1/(n/2*.1/2)就是1/n型所以极限是0.

当n趋于无穷时2的n次方有极限吗?一直都认为是无穷 可n趋于正无穷时和n趋于负无穷时不是不等么 糊涂啊

要注意前提条件的!当N趋向负无穷时应该是有极限无限趋向于0!当N趋向正无穷时应该是无极限趋向于正无穷!题目应该有条件的.

求n趋于无穷时,1/n+.+1/(3n)的极限

由欧拉公式,∑1/n=ln(n)+γ+O(1/n),可得1/n+1/(n+1)+.+1/(3n)=ln(3n)-ln(n)+O(1/n)=ln(3)+O(1/n),因此极限为ln(3).再问:由欧拉公

当x趋于负无穷时,求[/]的极限

令t=5^x,x趋于负无穷时,t趋于1lim(2+t/3+t),t->1lim(2+t/3+t)=3/4当x趋于负无穷时,求[/]的极限为3/4再问:t为什么趋于1?再答:不好意思,看错了。t趋近于0

n趋于无穷时 [1+2+3.+(n-1)]/n^2的极限

当n趋于无穷的时候,项数也趋于无穷,所以你的无穷多个0的和为0的想法是错误的,比如n个1/n相加,极限是1,而不是0;你所说的题目,只要进行通分即可,分子为1+2+...+(n-1)=n(n-1)/2

高数求极限 2^n*n!(/n^n) n趋于无穷?

借助Stirling公式:n!=√(2Пn)*n^n*e^(-n),(当n->∞时).原极限=lim(n->∞)√(2Пn)*2^n*e^(-n)=lim(n->∞)√(2Пn)/(e/2)^n(用L

lim n趋于无穷2的n次方sin(x/2的n次方)的极限怎么求

sin(x/2的n次方)换成等价的无穷小“x/2的n次方”,那么原式=lim2的n次方×(x/2的n次方)=x

几道高数求极限的题 1 x趋于1时,(x+x^2+...+x^n)/(x-1)的极限2 n趋于无穷时,(n*tan1/n

1、lim-[x*(1-x^n)]/[(x-1)^2]=-lim{x/[(x-1)^2]}*[-[((x-1)+1)^n-1]]上面是利用等价无穷小的代换化简limnx/(1-x)所以是x趋于1+时时

(n-1/n+3)的2n次方当n趋于无穷时的极限

(1+2^n+3^n)的1/n次方?记为an,则1+2^n+3^n>3^n,所以an>31+2^n+3^n<3×3^n,所以,an<3×3^(1/n)所以,an的极限是3

lim n趋于无穷(2n+3/2n+1)的n+1次方的极限怎么求

答案是e,主要用公式lim(n → ∞) (1 + 1 / n)^n = e

求极限:lim((2n∧2-3n+1)/n+1)×sin n趋于无穷

lim【n→∞】(2n²-3n+1)/(n+1)×sin(1/n)=lim【n→∞】(2n²-3n+1)/(n+1)×(1/n)=lim【n→∞】(2n²-3n+1)/(

n趋于正无穷求极限n^2*ln[n*sin(1/n)]

关于n的数列极限问题,可以转化为函数极限:n^2*ln[n*sin(1/n)]=【ln{[sin(1/n)]/(1/n)}】/[(1/n)^2]当n→+∞时,1/n→0,所以用x代替式中的1/n得到:

证明lnn/n^2在n趋于无穷时的极限为0

|lnn/n^2-0|0为使|lnn/n^2|N时|lnn/n^2-0|

求N趋于无穷时 ,1+1/2!+1/3!+.+1/n!的极限

e^x=1+x+x²/2!+x³/3!+……+x^n/n!+……取x=1:e=1+1+1/2!+1/3!+.+1/n!+……e-1=1+1/2!+1/3!+.+1/n!+……即n→

求数列极限的问题n(2^(1/(n+1))-n【(n倍的n+1次根号下2)减n】当n趋于无穷时的极限是多少?

极限为ln2.将其化为(2^(1/n+1)-1)/(1/n),用洛必达法则,可得原极限=((n/n+1)^2)*2^(1/n+1)*ln2,故极限为ln2.

(2^n+4^n+6^n+8^n)^(1/n)当n趋于无穷时的极限

将8从括号里提出来lim[n→∞](2^n+4^n+6^n+8^n)^(1/n)=lim[n→∞]8[(1/4)^n+(1/2)^n+(3/4)^n+1]^(1/n)=8(0+0+0+1)º