求平面x 2y z=4被柱面x2 y2=4所截曲面的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:09:36
求平面x 2y z=4被柱面x2 y2=4所截曲面的面积
若x+y=2,xy=-4,求x2y+xy2+1的值

(x+y)(xy)=x^2y+xy^2=-8原式=-7

关于微分几何的问题求椭圆柱面x2/a2+y2/b2=1在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面.

椭圆柱面x2/a2+y2/b2=1在任意点(x0,y0,z0)的切平面方程x0x/a²+y0y/b²=1,不含z,母线{x=x0,y=y0}上的每个点的切平面都是此平面

已知A=x3-2y3+3x2y+xy2-3xy+4,B=y3-x3-4x2y-3xy-3xy2+3,C=y3+x2y+2

因为A+B+C=x3-2y3+3x2y+xy2-3xy+4+y3-x3-4x2y-3xy-3xy2+3+y3+x2y+2xy2+6xy-6=1,所以,对于x、y、z的任何值A+B+C是常数.

求柱面(x-1)^2+(y-1)^2=1被平面z=0及曲面z=x^2+y^2所截得曲面面积A

设l为柱面的底,即圆(x-1)^2+(y-1)^2=1.那么设x=1+cost,y=1+sintz=x^2+y^2=(1+cost)^2+(1+sint)^2=3+2cost+2sintdl=√[(x

2(x2y+xy)-3(x2y+xy)-4x2y其中x=-2,y=12

原式=2x2y+2xy-3x2y-3xy-4x2y=-5x2y-xy当x=-2,y=12时,原式=-9.

设柱面的淮线为:y=X^2+Z^2,y=2X,母线垂直于准线所在平面,求这柱面方程.

由于,柱面的准线为x=2z,x=y*y+z*z.(将原题中的X=2z改写为:x=2z)而x=2z为一平面.故它就是准线所在平面.即所求柱面的母线垂直于此平面.此平面(x=2z)的法向量为n=(1,0,

30分!求柱面(x-1)^2+(y-1)^2=1被平面z=0及曲面z=x^2+y^2所截得曲面面积A

如图:再问:你好,这个是什么软件做出来的?3dmax吗?就是说面积是14.31吧再答:忘了说明,3DMAX测量物体时,当体积为0时,其表面积是指该薄片上下两层的表面积。所以输出数据14.31,实际只是

当x=2011,y=2012时,求代数式3x3-4x3y2+3x2y+2x2+4x3y2+2x2y-5x2-5x2y+x

化简得:9-12Y^2+6Y+4+12Y^2+4Y-10-10Y+X-Y+1=X-Y+4带入X、Y值得:=3

曲面z=(x^2+y^2) 被柱面^2+y^2=4及xoy平面所围成的立体体积

转化为极坐标求解则z=r^2;dv=2πrdr*z(r)=2πr^3dr;对dv求积分,上限为2,下限为0;

求平面x/3+y/4+z/5=1和柱面x^2+y^2=1的交线上与xOy平面距离最段的点

这是因为求距离都是正值,距离公式外都要加绝对值符号,作目标函数时,平方后就不会出现负数问题,你若对空间图形有直观的了解,就不必用平方项,因为平面x/3+y/4+z/5=1是经过A(3,0,0),B(0

用matlab求平面x/3+y/4+z/5=1和柱面x^2+y^2=1的交线上到平面xoy最短的点

首先根据后面的方程令x=cos(theta),y=sin(theta),这样就简单多了,具体代码如下[thetaz]=fminbnd(@(theta)5*(1-cos(theta)/3-sin(the

求曲面x^2+y^2=z,柱面x^2+y^2=4及xoy平面所围成立体体积

所围成立体体积=∫∫(x²+y²)dxdy(所围成立体体积在xoy平面上的投影:x²+y²≤4)=∫dθ∫r²*rdr(作极坐标变换)=2π*(2^4

微积分 求柱面:x^2+y^2=a^2被平面x+z=0及x-z=0(x>0,y>0)所截部分的面积

y=√(a^2-x^2)面积S=∫∫√(1+(y'x)^2dxdy=∫(0,a)dx∫(-x,x)a/√(a^2-x^2)dz=2a∫(0,a)x/√(a^2-x^2)dx=2a*(-√(a^2-x^

当x=-1,y=1时求代数式2x2y-(5xy2-3x2y)-x2的值

代入x=-1,y=1,2x^y-(5xy^-3x^y)-x^=2*(-1)^*1-{5*(-1)*1^-3*(-1)^*1}-(-1)^=2-(-5-3)-1=9备注:2^表示2的平方

求柱面z=x^2在平面区域D:0

我没有软件,写不出式子,利用直角坐标系,二重积分写成二次积分,x上限1,下限0,y上限1,下限0,被积函数,根号下1+4x^2

已知柱面方程为x^2+y^2=a^2,平面x+y+z=a 求两曲面交线所围成平面区域的面积

相交为椭圆柱轴对称方向(1,0,0)切面法线方向(1,1,1)/sqrt(3)它们垂直方向为相交椭圆的短轴方向(0,-1,1)/sqrt(2),由于此方向垂直柱轴对称方向,此方向直线相交柱的长度为柱的

求以双曲抛物面z=xy为顶,以xy坐标面为底,以平面x=0为侧,柱面x^2+y^2=1为内侧,柱面x^2+y^2=2x为

这道题应该是出错了,应该是以平面y=0为侧,那样结果就正确了.

求柱面x^2+y^2=1,平面x+y+z=3及z=0围成立体的体积

∫∫(3-x-y)dxdy=∫∫(3)dxdy=3π.【关键是利用被积函数奇偶性与积分区域对称性】因为x关于x为奇函数,D关于y轴对称,所以∫∫(x)dxdy=0类似地,有∫∫(y)dxdy=0