求双曲线9x^2-16y^2=144

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:06:02
求双曲线9x^2-16y^2=144
已知双曲线16x^2-9y^2=144,F1,F2是两个焦点P在双曲线上且|pF1|*|PF2|=32求角P1PF2

楼主问题打错了吧,应该是角F1PF2…………a=3,b=4则c=5|F1F2|=2c=10|PF1-PF2|=2a=6cos∠F1PF2=(PF1²+PF2²-F1F2²

已知双曲线16x^2-9y^2=144,F1,F2是两个焦点P在双曲线上且|pF1|*|PF2|=3求角P1PF2

假设pf1大则有方法如下pf1-pf2=6pf1*pf2=3求出cos角f1pf2=(pf1^2+pf2^2-f1f2^2)/(2*pf1*pf2)=[(pf1-pf2)^2+2*pf1*pf2-f1

已知双曲线的方程是16x^2-9y^2=144 1)求双曲线的交点坐标,离心率,和渐近线方程;

1)由题得:a=3,b=4,c=5所以,焦点坐标:F1(-5,0),F2(5,0)离心率:e=c/a=5/3渐近线方程:y=(4/3)x和y=-(4/3)x2)由双曲线的定义:||PF1|-|PF2|

双曲线x^2/16-y^2/9=1上有点P,F1,F2是双曲线的焦点 且∠F1PF2=π/3,求△PF1F2面积

楼上的是对的.可是焦点三角形面积公式不是高中数学考试中可以直接用的公式.可设|PF2|=n,|PF1|=8+n,|F1F2|=10根据余弦定理10^2=n^2+(8+n)^2-2*n*(8+n)*co

点P(x,y)是双曲线x^2/9-y^2/16=1上任意一点,求x-y/2的取值范围

设x-y/2=a,将之带入双曲线方程,最后等式中只存在a与x或者是a与y,然后根据x小于-3或x大于3与y是一切实数即可求得a的范围.

已知双曲线(X-8)^2/16-Y^2/9=1这个双曲线的焦点怎么求啊

先求出x²/16-y²/9=1的焦点坐标(-5,0),(5,0),横坐标右移8.得出本题焦点坐标(-13,0),(-3,0).

已知双曲线与椭圆x^2/16+y^2/64=1有相同的焦点,它的一条渐近线为y=x,求双曲线的方程

因为它的一条渐近线为y=x那么可以设双曲线方程为y^2-x^2=c而椭圆x^2/16+y^2/64=1的焦点是(0,4√3)、(0,-4√3)因为焦点在y轴,所以c>0且c+c=(4√3)^2故c=2

焦点在Y轴的双曲线渐近线方程为x+-2y=0,求双曲线方程

焦点在Y轴上,于是可设抛物线方程为y^2/a^2-x^2/b^2=1,于是渐近线为y/a=x/b,已知渐近线为2y=x,所以b=1,a=2,所求方程y^2/4-x^2=1

双曲线渐近线方程为y=正负根号2/2x 双曲线过点(2,1),求双曲线方程

双曲线渐近线方程为y=正负根号2/2x即x±√2y=0设双曲线方程x²-2y²=k代入(2,1)4-2=kk=2方程为x²/2-y²=1

双曲线x^2/9-y^2/16=1的两个焦点为F1F2,点P在双曲线上,若PF1⊥PF2,求点P的坐标

由题意,两个焦点为F1(-5,0);F2(5,0)PF1⊥PF2,也就是说OP=F1F2/2=c=5其实P点就是圆x^2+y^2=25与双曲线x^2/9-y^2/16=1计算:144=16x^2-9y

双曲线与椭圆x^/16+y^2/64=1有相同的焦点,它的一条渐近线为y=x,求此双曲线的方程.

椭圆c'²=64-16=48有相同的焦点则双曲线中c²=48渐近线y=x则b/a=1椭圆焦点在y轴所以是y²/a²-x²/a²=1且a

过双曲线x*2/9-y*2/16=1的右焦点做一条渐近线的平行线,它与此双曲线交于一点P,求P与双曲线的两个顶点A,A'

由已知得:a²=9,b²=16,∴c²=a²+b²=25,∴右焦点F(5,0)∵双曲线的渐近线Y=±bX/a=±4X/3∴过右焦点与渐近线平行的一支为

求与双曲线y平方/9-x平方/16=1有共同渐近线,且过点M(-3,2倍跟号3)的双曲线方程

因为与双曲线y平方/9-x平方/16=1有共同渐近线则设为y^2/9k-x^2/16k=1因为过点M(-3,2√3)代入方程得12/9k-9/16k=14/3k-9/16k=116*4-9*3=48k

双曲线的左右焦点f1f2,x^2/16-y^2/9=1,点P在双曲线上,pf1*pf2=0,求PF1+PF2的绝对值

由双曲线定义可得:〔F1〕-〔F2〕=2a=2*4=8;由解析式可得焦点(-5,0)(5,0)2c=10;PF1垂直于PF2利用勾股定理可得|PF1|²+|PF2|²=4c&sup

1.已知双曲线(x^2/9)-(y^2/16)=λ(λ不等于0)经过(9/4 ,5),求该双曲线的实轴长,虚轴长,焦点坐

(9/4)^2/9-5^2/16=λ=-1(y^2/16)-(x^2/9)=1实轴长2*4=8虚轴长2*3=6焦点坐标(0,±5)离心率5/4渐近线方程y=±4/3设M(t,s),L:y=x+s-tx

已知双曲线x^2/16-y^2/9=1,左焦点f1(-5,0),点P在双曲线右支上,求直线PF1斜率取值范围

用渐近线来做啊,渐近线方程y=+-3/4,点在外面的话,你先画图方便自己了解下,当画的直线与渐近线平行的时候没有交点,只有斜率落在[-3/4,3/4]之间才有交点吧,也就是说点P在双曲线右支上,直线P

已知与双曲线x^/16-y^/9=1共焦点,且过点P(-根号5/2,-根号6),求双曲线方程

由5/4a²-6/(25-a²)=1,即5/4a²=1+6/(25-a²)=(31-a²)/(25-a²),所以4a²×(31-a

已知与双曲线x^/16-y^/9=1共焦点,且过点P(-根号5/2,-根号6),求双曲线的标准方程

确定是求双曲线?难道不是求椭圆方程?再答:抱歉,看错了!可以无视刚才的疑问再问:双曲线再答:

已知与双曲线x^/16-y^/9=1共焦点,且过点P(-根号5/2,-根号6),求双曲线的标准方程,

由5/4a²-6/(25-a²)=1,即5/4a²=1+6/(25-a²)=(31-a²)/(25-a²),所以4a²×(31-a

求抛物线标准方程顶点是双曲线16x^2-9y^2=144中点,准线过双曲线左顶点,且垂直于坐标轴

双曲线方程是x^2/9-y^2/16=1a^2=9,a=3左顶点坐标是(-3,0),即准线方程是x=-3,即有-p/2=-3,p=6所以,抛物线的方程是y^2=2px=12x