求双曲抛物面z=xy被柱面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:40:08
求双曲抛物面z=xy被柱面
画抛物三维曲面,抛物面在XY平面的投影是等腰梯形,已知抛物面的方程Z=(X.^2+Y.^2)/20

Y=3+C/X齐次方程方程的:x*dy的/DX+y=0处;到:DY/Y=-dx/X;有LN|Y|=-ln|X|+C;解决方案太齐次方程为:Y=C/X;一般的解决方案然后将原来的方程为:Y=H(X)/X

双曲抛物面Z=XY的图像怎么画呀?

马鞍面的方程为X2/a2-Y2/b2=z,和Z=XY是不同的;你可以通过用X=a,Y=b,Z=c(此处a,b为任意数)去截取,这个图形最主要的特点是XY=c,要靠想象的,自己很难画出来,除非有现成的工

求旋转抛物面z=x2+y2被平面z=1所截下的有限部分的面积

z=1与z=x^2+y^2联立:x^2+y^2=1,z=1.这个曲线为以(0,0,1)圆,其中半径为1.所以面积S=πr^2=π

高数二次积分题,计算立体体积:旋转抛物面z=x^2+y^2,柱面y=x^2及平面y=1,z=0围成的立体

根据对称性:V=∫(0,1)dy∫(0,√y)(x^2+y^2)dx=44/105再问:能详细讲下么,答案是88∕105

作出曲面 z=xy被柱面x^2+y^2=1所围部分的图形,并求其面积.写出MATLAB程序

应该先绘制曲面z=xy.matlab程序如下:x=-30:1:30;y=-30:1:30;n=length(x);[xb,yb]=meshgrid(x,y);zb=xb.*yb;%要用xb,yb而不是

设Ω由平面z=0,y=x,柱面y=x²和抛物面z=x²+3y²所围成,求Ω的体积

Ω的体积=∫dx∫(x²+3y²)dy=∫(2x³-x^4-x^6)dx=1/2-1/5-1/7=11/70

求双曲抛物面z=xy被柱面x^2+y^2=1(x>=0,y>=0)截下部分的面积.

D={(x,y):x^2+y^2=0,y>=0},z=xy,az/ax=y,az/ay=x,于是面积=二重积分_D根号(1+(az/ax)^2+(az/ay)^2)dxdy=二重积分_D根号(1+x^

求由抛物柱面z=2-x^2及椭圆抛物面z=x^2+ y^2围城的立体体积

体积=∫∫D(x²+y²)dxdy=∫∫D(p²)pdpdθ=∫(0,2π)dθ∫(0,√a)p³dp=1/4∫(0,2π)p^4|(0,√a)dθ=1/4∫(

怎样用Mathematica8画双曲抛物面 z=xy?

两种画法1ContourPlot3D函数,画等值面ContourPlot3D[x*y-z==0,{x,-2,2},{y,-2,2},{z,-4,4}]2Plot3D函数,直接画,但是要用点技巧,注意如

求抛物面z=4-x^2-y^2被z=x^2+y^2所截下曲面的面积?

求偏导z'_x=-2xz'_y=-2y令z1=4-x^2-y^2=x^2+y^2=z2可得D:x^2+y^2≤2极坐标下可表示为0≤r≤√2,0≤θ≤2πS=∫∫(D)√(1+4x²+4y&

旋转抛物面z=2-x^2-y^2与xy坐标面所围成的立体的体积

z=∫∫Dzdxdy,(D:x^2+y^2再问:请问能在写的详细一点吗?∫∫Dzdxdy中的Dz是什么意思?再答:D代表积分区域,z代表积分函数再问:∫(0,2π)dθ∫(0,√2)a(2-a^2)d

方程z=x^2+y^2表示的二次曲面是什么?(A.椭圆面 B.柱面 C.圆锥面 D.抛物面)还有z^2=x^2+y^2呢

柱面(cylinder)动直线沿着一条定曲线平行移动所形成的曲面.动直线称为柱面的直母线,定曲线称为柱面的准线.当准线是圆时所得柱面称为圆柱面;特别地,如果直母线垂直于圆所在平面时,所得柱面称为直圆柱

z=x^2+y^2表示的二次曲面是椭球面,柱面,圆锥面,还是抛物面?

图像过原点当x^2+y^2增大即圆的半径增大时z也增大所以它的图像是倒立的圆锥面顶点在原点

求以双曲抛物面z=xy为顶,以xy坐标面为底,以平面x=0为侧,柱面x^2+y^2=1为内侧,柱面x^2+y^2=2x为

这道题应该是出错了,应该是以平面y=0为侧,那样结果就正确了.

有关三重积分的问题由双曲抛物面z=xy及平面z=0,x+y=1所围成的闭区域此题的x,y,z的范围应该怎么样确定 理由是

所围成的闭区域是在第一卦限,在z方向的范围:底面为z=0,即为xoy坐标平面,上面即为马鞍形双曲面z=xy.x和y的范围均为从0到与z轴平行的平面x+y=1.所以,z的积分范围为[0,xy]x的积分范

∫∫∫xy dV,其中V是由双曲抛物面z=xy与平面x+y=1及z=0所围立体区域,我算出来老是11/180,但是答案上

你列的算式基本上是对的,但是计算过程中有错误,结果确实是1/180.详细过程如下:

双曲抛物面跟z=xy图像有什么区别,

是多重积分中的问题么?首先这不是一个双曲抛物面,xy=z是在每一个z=const面上xy=const的双曲线族;双曲抛物面应该是x^{2}+y^{2}=z,在每个z=const面上,x^{2}+y^{