求利用三重积分曲面所围成立体的体积题目及答案
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:20:08
再问:谢谢(不过最后一步写错了,5/2还要乘2π/3
再问:再问:额,答案是这个。您看看前面区域的范围确定是对的吗?后面先别管再答:再问:好的,我算算再答:后面也就算得对了。
z=x^2+2y^2叫椭圆抛物面,教材里在“二次曲面”部分是介绍过这种曲面的,它的立体图形如开口向上的旋转抛物面,只不过用平行于xoy面的平面去截,截痕不是圆,而是椭圆.z=6-2x^2-y^2也是椭
第二类曲面积分可以通过高斯公式化成三重积分来做的,但是这个要注意高斯公式应用条件,要封闭空间,有时给出的不是封闭空间的,需要添加辅助面,构成封闭空间,还要注意正方向,高斯公式规定是外法线方向为正的……
这是一个圆锥面和一个旋转抛物面相交的情形.画出图像就很容易定出积分上下限了.方法一:用三重积分计算体积,积分限为:0≤θ≤2π,0≤ρ≤1,ρ²≤z≤ρ,积分后的结果有v=π/6方法二:先用
再答:再答:再答:
由z=6-x-y,z=√(x+y)得D:0≤x+y≤4空间闭区域Ω可表示为:{(x,y,z)|√(x+y)≤z≤6-x-y,0≤x+y≤4}V=∫(上限2π,下限0)dθ∫(上限2,下限0)rdr∫(
设所围成的立体为Ω,则Ω的上半曲面是抛物面,下半曲面是开口向上的锥面,因此,宜用柱面坐标计算,又由z=6−x2−y2z=x2+y2⇒交线x2+y2=4z=2,Dxy:x2+y2≤4,而r≤z≤6-r2
可以用柱面坐标,立体体积=4∫(0,π/2)dθ∫(0,1)rdr∫(r²,r)dz=4π/2∫(0,1)(r²-r³)dr=2π(r³/3-r^4/4)|(0
Ω由z=x²+2y²及2x²+y²=6-z围成.消掉z得投影域D:x²+2y²=6-2x²-y²==>x²+y
稍等再答:再答:降三重积分为二重积分最简单。
可能是你的哪里算漏了吧
这是大学理工科的高等数学.一般人真答不上来.二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(
关键是搞清区域D是什么,y=x,y=x^2构成柱体域,D*为在xy面的投影.z=x^2+y^2,z=2x^2+y^2分别是柱体的上下底面.所以用先对z坐标积分,再对xy二重积分的方法.
这个是二重积分算出来的啊:积分区域D:x²+y²≤4V=∫∫(4-x²-y²)dxdy=∫【0→2π】dθ∫【0→2】(4-ρ²)ρdρ=2π*(2ρ
∵所求体积在xy平面的投影是S:x²/4+y²/2=1∴所求体积=∫∫[(4-y²)-(x²+y²)]dxdy=∫∫(4-x²-2y