求利用三重积分曲面所围成立体的体积题目及答案

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:20:08
求利用三重积分曲面所围成立体的体积题目及答案
利用三重积分计算由下列各曲面所围立体的体积.球面x^2+y^2+z^2=2(z>=0),平面z=

再问:谢谢(不过最后一步写错了,5/2还要乘2π/3

高数:请问这题三重积分求所围成的体积怎么算?

再问:再问:额,答案是这个。您看看前面区域的范围确定是对的吗?后面先别管再答:再问:好的,我算算再答:后面也就算得对了。

求曲面z=x^2+2y^2及z=6-2x^2-y^2所围成立体的体积.(用重积分做)

z=x^2+2y^2叫椭圆抛物面,教材里在“二次曲面”部分是介绍过这种曲面的,它的立体图形如开口向上的旋转抛物面,只不过用平行于xoy面的平面去截,截痕不是圆,而是椭圆.z=6-2x^2-y^2也是椭

高数中曲面积分和三重积分之间的联系是什么?

第二类曲面积分可以通过高斯公式化成三重积分来做的,但是这个要注意高斯公式应用条件,要封闭空间,有时给出的不是封闭空间的,需要添加辅助面,构成封闭空间,还要注意正方向,高斯公式规定是外法线方向为正的……

利用三重积分计算由曲面z= √(x^2+y^2),z=x^2+y^2所围成的立体体积

这是一个圆锥面和一个旋转抛物面相交的情形.画出图像就很容易定出积分上下限了.方法一:用三重积分计算体积,积分限为:0≤θ≤2π,0≤ρ≤1,ρ²≤z≤ρ,积分后的结果有v=π/6方法二:先用

利用三重积分计算由曲面所围成的立体的体积

由z=6-x-y,z=√(x+y)得D:0≤x+y≤4空间闭区域Ω可表示为:{(x,y,z)|√(x+y)≤z≤6-x-y,0≤x+y≤4}V=∫(上限2π,下限0)dθ∫(上限2,下限0)rdr∫(

利用三重积分计算曲面z=6-x2-y2与z=x

设所围成的立体为Ω,则Ω的上半曲面是抛物面,下半曲面是开口向上的锥面,因此,宜用柱面坐标计算,又由z=6−x2−y2z=x2+y2⇒交线x2+y2=4z=2,Dxy:x2+y2≤4,而r≤z≤6-r2

三重积分计算由曲面Z=(X^2+Y^2)^0.5和曲面Z=(X^2+Y^2)所围成的立体体积的三次积分!写出积分表达式就

可以用柱面坐标,立体体积=4∫(0,π/2)dθ∫(0,1)rdr∫(r²,r)dz=4π/2∫(0,1)(r²-r³)dr=2π(r³/3-r^4/4)|(0

用三重积分 求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.

Ω由z=x²+2y²及2x²+y²=6-z围成.消掉z得投影域D:x²+2y²=6-2x²-y²==>x²+y

用三重积分求曲面z=2-(x^2+y^2)与z=X^2+y^2所围立体体积

稍等再答:再答:降三重积分为二重积分最简单。

二重积分,三重积分,第一型曲面积分

这是大学理工科的高等数学.一般人真答不上来.二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(

三重积分求下面曲面所围成的区域体积 z=x^2+y^2,z=2x^2+y^2,y=x,y=x^2

关键是搞清区域D是什么,y=x,y=x^2构成柱体域,D*为在xy面的投影.z=x^2+y^2,z=2x^2+y^2分别是柱体的上下底面.所以用先对z坐标积分,再对xy二重积分的方法.

求曲面z=x^2 y^2及平面z=4所围成立体的体积

这个是二重积分算出来的啊:积分区域D:x²+y²≤4V=∫∫(4-x²-y²)dxdy=∫【0→2π】dθ∫【0→2】(4-ρ²)ρdρ=2π*(2ρ

求由曲面z=x^2+y^2,z=4-y^2所围立体的体积,用三重积分

∵所求体积在xy平面的投影是S:x²/4+y²/2=1∴所求体积=∫∫[(4-y²)-(x²+y²)]dxdy=∫∫(4-x²-2y