求二重积分由圆周x² y²=4及y轴围成的右半闭区域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:03:50
极坐标标∫∫√(R²-x²-y²)dxdy=∫∫r√(R²-r²)drdθ=∫[-π/2→π/2]dθ∫[0→Rcosθ]r√(R²-r
用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r
极坐标∫∫(D)ln(1+x²+y²)dxdy=∫∫(D)rln(1+r²)drdθ=∫[0→2π]dθ∫[0→1]rln(1+r²)dr=2π∫[0→1]rl
实际球面于面所围成的立体体积时,被积量是dS,答案给出的变化量应该是dxdy楼主注意区别题中变化量是dS的时候被积函数是1变化量变为dxdy时被积函数才是(6-2x^2-y^2)-(x^2+2y^2)
极坐标系D:0≤θ≤π/2,0≤p≤2∫∫√(1+x²+y²)dxdy=∫[0,π/2]dθ∫[0,2]√(1+p²)pdp=π/2*(1/3)(1+p²)^(
再问:最后不应该是ln2*π/4吗?再答:是的再问:非常感谢,我还有一道你能帮我做一下么,我已经提问了,你搜一下吧计算二重积分:∫∫(D)ydxdy,其中D:x^2+y^2≤2x,y≥0再答:解法一样
原式=∫dθ∫rdr/√(4-r^2)(作极坐标变换)=2π∫rdr/√(4-r^2)=2π[√(4-0^2)-√(4-2^2)]=4π.
我认为应该是5/6啊就是那个积分区间的选择啊我认为应该把曲线投影到xoy平面上啊就是你说的z=0的平面上啊这是我自己的看法啊
所求体积=∫dx∫(1-x-y)dy=∫[(1-x)²/2]dx=(1/2)(1/3)=1/6.
y=x,x+y=1,x=0所形成的交点为((1/2,1/2),(1,0)∫∫dxdy=∫[0,1/2]dy∫[y,1-y]dx=∫[0,1/2](1-2y)dy=(y-y^2)[0,1/2]=1/4
两曲面的交线在xy坐标面上的投影曲线是x^2+y^2=2,所以整个立体在xy面上的投影区域是D:x^2+y^2≤2体积V=∫∫(D)[(6-2x^2-y^2)-(x^2+2y^2)]dxdy用极坐标=
∫∫xy²dxdy=∫dθ∫(rcosθ)*(rsinθ)²*rdr(应用极坐标变换)=∫(cosθsin²θ)dθ∫r^4dr=∫sin²θd(sinθ)∫r
对,就是这个.算出来答案是1/4.
曲线y=√x与直线y=x的交点为(0,0)和(1,1)于是积分区域D={(x,y)|y²≤x≤y,0≤y≤1}从而原式=∫[0,1]siny/ydy∫[y²,y]1dx=∫[0,1
∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2
{y=√x{y=x²==>交点为(0,0),(1,1)∫∫_Dx√ydσ=∫(0→1)x∫(x²→√x)√ydy=∫(0→1)x·(2/3)y^(3/2):(x²→√x)
第一道应该先求dx,而后在dy即可第二道同上!
联立z1=x^2+2y^2及z2=6-2x^2-y^2消去z得x^2+y^2=2(图略.z2在上z1在下)知方体Ω在xoy面投影区域为D:x^2+y^≤2极坐标中0≤θ≤2π,0≤r≤√2那么立体的Ω
用极坐标∫∫e^(x^2+y^2)dδ=∫(0~2π)dθ∫(0~2)e^(ρ^2)ρdρ=2π∫(0~2)e^(ρ^2)ρdρ被积函数的原函数是1/2×e^(ρ^2),所以结果是π(e^4-1)