求下列向量组的最大无关组和秩
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:52:20
┏11222┓┃20-112┃┃130-24┃┗21123┛→﹙行初等变换﹚→┏10-100┓┃01100┃┃00110┃┗00001┛一个最大无关组=﹛α1,α2,α4,α5﹜α3=-α1+α2+α
令A=(a1,a2,a3,a4)做行变换,化为阶梯矩阵,然后直接写出秩和极大无关组再问:方法我知道,我想要具体的计算过程,因为怎么算都跟答案不符再答:根据题意的到A=(12020-4-4-20k+25
A=(a1,a2,a3,a4)=[12-13][0101][1101][0202]行初等变换为[1101][01-12][0101][0202]行初等变换为[1101][01-12][001-1][0
(a1,a3,a2)=1-292-4100-1210484r4*(1/4)1-292-4100-1210121r1-r4,r2-2r4,r3+r40-480-6980411121r1*(-1/4)01
(a1^T,a2^T,a3^T,a4^T)=14-122-1-311-5-423-6-73r4-r2-r3,r2-2r1,r3-r114-120-9-1-30-9-300000r3-r214-120-
(a1,a2,a3,a4,a5)=13213-1101-111102-13120r1+r2,r3+r2,r4-r204222-1101-10211102111r1-2r3,r4-r300000-110
把每个向量按顺序α1,α2,α3,α4构成矩阵A,对A施以初等行变换.32534-503A=-20-1-3最后经过初等行变换后,变成阶梯型,如,如果变成这样5-32510030102A1=001600
12110311213014-1第3行减去第2行,第5行减去第4行,第4行减去第1行,第2行减去第1行1210-2201-101-101-1第1行加上第2行,第2行加上第3行×2,第4行减去第3行,第
3-r2,r2-3r1,r3-3r1,r4-r125311743012300120135r4-r2-r3,r2-2r3,r1-17r3253109010-100120000r1-31r22500400
(a1,a2,a3,a4,a5)=112210215-1203-131104-1r3-2r1,r4-r1112210215-10-2-1-5100-22-2r3+r2,r4*(-1/2)1122102
112210215-1203-131104-1r3-2r1,r4-r1112210215-10-2-1-5100-22-2r3+r2,r4*(-1/2)112210215-100000001-11r1
解:(a1^T,a2^T,a3^T,a4^T)=11111102100-3r1-r2,r2-r3001-10105100-3r1r3100-30105001-1所以a1,a2,a3是一个
一看就没好好看书,这玩意是线代里最最最最基本的玩意了……4个向量,每个都是4元1次方程,联立成方程组,高斯消元(这是比较初等的解释).4个向量,写在一起成一个矩阵,然后还是高斯消元,但是把变换阵记下来
3-2r1,r4-r1112202150-2-1-500-22r3+r211220215000000-22r1+r4,r4*(-1/2),r2-r4110402060000001-1r2*(1/2),
(α1^T,α2^T,α3^T,α4^T,α5^T)201446127253-10-1100312r1-2r2,r3-3r20-400-4127250-7-21-7-1400312r1*(-1/4),
不需要,如果确定是r,2是不需要验证的,可以保证成立
17.(1)A=1-15-111-233-18113-97化为行最简矩阵:103/2101-7/2200000000r(A)=2极大线性无关组:a1,a2a3=3/2*a1-7/2*a2a4=a1+2
(a1,a2,a3,a4)=120320421t5t+4102-1r1-r4,r2-2r4,r3-r402-2400040t3t+5102-1r2*(1/4),r1-4r2,r3-(t+5)r202-
因为题目要求行向量组的一个极大无关组,需将矩阵转置再用初等行变换(1)A^T=3111-1302-42-14r1-3r2,r4-2r204-81-1302-401-2r1-4r4,r3-2r40001